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Abstract Based on the method of qualitative research in ordinary differential equa-
tions,it is proved that,for any given positive £ and y,and for any given real a,b and c,
the Burgers-KdV eguation ;

u + vy, — yu, + By, =10
has at least one,but at most finite static solutions satisfying the same boundary conditions

on the interval [(1,1] of z. Some sufficient conditions on the global stability for certain
static sclutions are given.
; Key Words Boundary conditions jnumber of static solutions ; global stability jdissipa-
tion jdispersion.
Classification 35MO5.

1. Introduction

In [1],we have shown that,for any positive §# and y,and for any real a,b and ¢,
the Burgers-KdV equation :

ui+uur_w.n+ﬁum£ﬂ (1'1)
has infinitely many static solutions satisfying the boundary conditions
u(0,8) = a,u,(0,t) = band u(l,t) = ¢ (1. 2)

on the interval [ 0,1 ] of x,and these static solutions differ from each other mainly by
their numbers of extremum points.

In this paper we shall show that,if the boundary conditions (1. 2 are changed in-
to

u(0,8) = a,u(l,t) =bandu(l,f) =rc¢ (1.3
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then the equation (1. 1) has at least one, but at most finite static solutions, i. e, , the
change of ways in assigning the boundary conditions leads to a great change in quality
of the number of the static solutions. In addition,we will also show that this change of
the boundary conditions hag 2 strong influence on the stability of the static solutions.
And we will give some sufficient conditions on the global stability for certain static-colu-
tions. :

Because the Hurgers-_KdF equation (1. 1) is the simplest nonlinear wave equation
with the mixed effect of dissipation and dispersion (see [21,[3]), the strong depen-
dence of the number and stability of static solutions on the boundary conditions must re-
flect some fundamental properties of the system with the effect of dissipation and disper-
S1OT1.

2. Existence and Number of Static Solutions

In [1];%*!: 'h.aw: known that the static solution of equation (1. 1) satisfies the fol-
lowing ordinary differential equation

W/2— o+ =k i
Where k€ R is an integral constant,and =du/dz. And under the transformation
X o= u(x),Y = o' (z)

(2. 1) is changed into the tollowing autonomous system

X =¥
: k ¥ 1 (2.2)
=4 Yy _ -y

For given Biyvsa,b,c and k,there exists a unigque integral curve passing through
the point Py=(b,c) on the (X,¥) plane when

The part of this integral curve corresponding to x=_1 is denoted by L(E),and the
moving point on L (k) is denoted by

Plz,b) = (X(2,8),Y(z,k)), € (— co,1] (2.3)
Obviously

Pl.‘-l = F(I!"!L} e [I(I,k}ﬁ}rfl,k:ﬁ) == (b:c}
Generally, for any given k< R, the point

PCOLE) = (X(0,k),¥C0,1))
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