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Abstract The general difference schemes for the first boundary problem of the
fully nonlinear parabolic systems of second order

f[I1 tsu: Uy, II5":':-1:‘-‘.'!.'-r"*'l:t} = D

are considered in the rectangular domain @Qr = {0 £z < [, 0 < t < T}, where u(z,t)
and f(z,t,u,p rq) are two rn-dimensional vector functions with m > 1 for (=z,t) € @
and u, p, r, g € R™. The existence and the estimates of solutions for the finite difference
gystem are established by the fixed point technique. The absolute and relative stability
and cnnv&rgt.-ncc of difference schemesz are justified by means of a series of a priori
estimates. In the present study, the existence of unique smooth solution of the original
problem is assumed. The similar results for nonlinear and quasilinear parabolic aystema
are also obtained.
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1.. Introduction

1. In [1-5], for the boundary problem of the quasilinear parabolic systems of higher

order

[—1}Mu: + Az, t,u, vy, e uph— Jtigane = fz, b u, g, 0 0o U 2001 ) (1)
some general finite difference schemes are studied, where u = (uy,+-+,up)(m > 1) and
flz,t, 4,1z, -+, uzane—1 ) are m-dimensional vector functions, Az, ¢, u, e, -+, u ae-1) is

a m ¥ m positively definite matrix and M > 1 is an integer. The absolute and relative
convergence of the solutions of the difference schemes to the generalized vector soclution
u(z,t) € WEEEM'H{QT] of the original problem have been established in the sense of
weak convergence for the functional space WEM’”[QT}. .

In the present work, we are going to study the difference schemes for the fﬁll}r
nonlinear parabolic systems of second order

flz,t,u, Uz, tuzy, u) =0, (2)
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where w = (uy, -+, uy,)(m = 1) and f(z,t,u,p,r, q) are the m-dimensional vector func-
a d . ks
tions and u = --E, 4y = — and Uzy = —— are the corresponding vector derivatives.
dt X dzl
The fully nonlinear systems (2) of second order is said to be uniformly parabolic if
for the m > m Jacobl derivative matrices fy(z,t,u,p,r,¢) and f.(z,t,u,p,r,q), there is
a positive constant a > 0, such that

(&, =17 1+€) = al€} (3)

forany £ € R™, where (z,t) € Qr and u,p,r,g € R™. Let us consider in the rectangular
domain Qr = {0 <z <[,0<t < T} with!{ > 0 and T > 0, the problem of system (2)
with the boundary conditions

u(0,t) = ¢u(t), u(l,t)= 1.,&1{-!} (4)

and the initial condition
u{:r.:_ﬂ} = ¢(z) {5}

where wy(t), #1(t) and ¢(z) are given m- dm:ensmnal vector functions of variables ¢
[0,7T] and z € [0,1] respectively.

For the boundary problems (4) and (5) of the nonlinear and quasilinear parabolic
systems of second order

ue = [z, 4, 4y, tzs) (6)
and
ut = A[IJ i-:, u’!-uE:IuE-E + F{E:r t, u'rt"!'::] (T]

some general finite difference schemes are also studied by the similar method and ana-
logous results are obtained.,

For the sake of brevity, we adopt the similar notations and abbreviations are used
in [1,5] and some lemmas and technique of treatment in [1,5] are repeately used in the
present work.

2. Let us divide the rectangular domain Q7 into small grids by the parallel lines
z=z; (=0,1,---,J)and t =¢" (n =0,1,---, N) with x; = jh and 1™ = nr, where
Jh =1land N7 =T,J and N are integers, and h and r are the steplengths of the grids.
Denote va = {v}|f = 0,1,--+,J; n = 0,1,--+, N} the m-dimensional discrete vector
function defined on the grid points {(=;,t")| 7 =0,1,---J;n=10,1,--- ,N}.

Let us now construct the general finite difference schemes of the above mentioned
system (2) as follows:
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