EXTERIOR PROBLEM FOR THE THREE-DIMENSIONAL EULER EQUATIONS

Zhang Pingwen

(Department of Mathematics, Peking University, Beijing, 100871) (Received Jan. 21, 1990; revised Dec. 5, 1990)

Abstract A.priori estimates for the exterior initial boundary value problems of the Euler equations are considered. The existence and uniqueness of a local solution is proved.

Key Words Exterior problem; Euler equations.

Classifications 35A07, 35Q05.

0. Introduction

Let Ω be an exterior domain of \mathbb{R}^3 with bounded smooth boundary Γ . The velocity $u=(u^1(x,t),u^2(x,t),u^3(x,t))$ and the (scalar) pressure $\pi=\pi(x,t)$ of the fluid motion are assumed to be governed by the Euler equations in $Q_T=\Omega\times[0,T](0< T<\infty)$

by the Euler equations in
$$Q_T = \Omega \times [0, T](0 < T < \infty)$$

$$\begin{cases} \frac{\partial u}{\partial t} + (u \cdot \nabla)u + \nabla \pi = f \\ \text{div } u = 0 \end{cases} \tag{0.1}$$

with the initial condition

$$u(x,0) = u_0(x), \quad x \in \Omega$$
at infinity (0.2)

and with the condition at infinity

$$\lim_{|x| \to \infty} u(x, t) = u_{\infty}, \quad t \in [0, T]$$
(0.3)

and the condition on the boundary Γ

$$u \cdot n \Big|_{\Gamma} = 0, \quad t \in [0, T] \tag{0.4}$$

where $f = (f^1(x,t), f^2(x,t), f^3(x,t))$ is the given external force field. $u_0(x) = (u_0^1(x), u_0^2(x), u_0^3(x))$ is the given initial velocity, $u_{\infty} = (u_{\infty}^1, u_{\infty}^2, u_{\infty}^3)$ is the given constant velocity and $u \cdot n|_{\Gamma}$ is the outward normal component of u on Γ .

The purpose of the present paper is to show the existence of solutions using a new priori estimate and standard technique in partial differential equations. We followed Roger Temam [1].

In the case where Ω is bounded, the existence was studied by Temam, and in the case where Ω is exterior domain in \mathbb{R}^2 , Keisake Kikuchi [4] followed T.Kato [5] and gave the existence of a classical solution.

1. A Priori Estimates of the Solutions of the Euler Equations

1.1 Notation

We will use classical notation and results concerning the Sobolev spaces, $W^{s,p}(\Omega)$ integer, $1 \leq p < \infty$, is the Sobolev space of real valued L^p functions on Ω , such that all their derivatives to order s belong to $L^p(\Omega)$. If p = 2, we write $H^s(\Omega) = W^{s,2}(\Omega)$.

We write $(f,g) \cdot |f|$, the scalar product and the norm in $L^2(\Omega)$, $((f,g))_m$ and $||f||_m$, the scalar product and the norm in $H^m(\Omega)$,

$$((f,g))_m = \sum_{|\alpha| \le m} (D^{\alpha}f, D^{\alpha}g)$$

where D^{α} is a multi-index derivation, $\alpha = \{\alpha_1, \alpha_2, \alpha_3\}$. The norm in $L^p(\Omega)$ is denoted by $|f|_p$, and $||f||_{m,p}$ denotes that of $W^{m,p}(\Omega)$ the same notations will be also used for the norms and scalar products in $(L^2(\Omega))^3$, $(H^m(\Omega))^3$, \cdots .

We assume that the boundary of Ω is a two-dimensional manifold of class C^r with r sufficiently large so that the usual embedding theorems hold. In particular, $W^{m,p}(\Omega) \hookrightarrow L^r(\Omega)$ where 1/r = 1/p - (m/3) if m < 3/p, $p \le r < \infty$ is arbitrary if m = 3/p, $r = \infty$ if m > 3/p.

We recall also that if m > 3/p (and Ω is smooth), $W^{m,p}(\Omega)$ is an algebra for the pointwise multiplication of functions.

Let

$$X_m = \{ u \in (H^m(\Omega))^3, \text{ div } u = 0, u \cdot n = 0 \text{ on } \Gamma \}$$

 $X_{m,p} = \{ u \in (W^{m,p}(\Omega))^3, \text{ div } u = 0, u \cdot n = 0 \text{ on } \Gamma \}$

For m=0, X_0 is a closed subspace of $(L^2(\Omega))^3$ and we denote by P the orthogonal projection in $(L^2(\Omega))^3$ on X_0 , we recall that P is also a linear continuous operator from $(W^{m,p}(\Omega))^3$ into itself $(m \ge 1)$. Indeed, if $u \in (W^{m,p}(\Omega))^3$, then $(I-P)u = \operatorname{grad} \pi$ where π is a solution of the Neumann problem

$$\Delta \pi = \text{div } u, \in W^{m-1,p}(\Omega)$$

 $\partial \pi / \partial n = u \cdot n, \in W^{m-(1/p),p}(\Gamma)$

$$(0.5)$$

and $\pi \in W^{m,p}(\Omega)$ by the classed results of regularity for the Neumann problem. We construct a function $\bar{u}(x)$ satisfying

For example, we select $\bar{u}(x) = u_{\infty} - b(x)$, $b(x) = \text{rot}(\xi(x)d(x))$, $d(x) = (u_{\infty}^2 x_3, u_{\infty}^3 x_1, u_{\infty}^1 x_2)$, $\xi(x)$ is a smooth "cut-off" function, which is equal to 1 nearby Γ , and equal to 0 when |x| is very large.