AN INVARIANT GROUP OF MKdV EQUATION*

Tian Chou

(Department of Mathematics, University of Science and Technology of China, Hefei, Anhui, China) (Received Nov. 12, 1990; revised Jan. 13, 1992)

Abstract In this paper, we present an invariant group of the MKdV equation $q_t = q_{xxx} - 6q^2q_x$. By using this invariant group, we can obtain some new solutions from a known solution by quadrature.

Key Words Invariant group; MKdV equation; Miura transformation. Classification 35Q.

It is meaningful but difficult to find the invariant groups of a differential equation. For the Nonlinear Evolution Equations, only a few invariant groups we have known. For example, there are four invariant groups of KdV equation: x-translation, t-translation, Galilean transformation and scalar transformation [1]. In this paper, we present an invariant group of MKdV equation.

In the following, $\int f dx$ (or $\int f dt$) means and arbitrary primitive function of f and it is taken definitely.

1. MKdV equation

$$q_t = q_{xxx} - 6q^2 q_x \tag{1.1}$$

is related to the KdV equation

$$u_t = u_{xxx} + 6uu_x \tag{1.2}$$

Between (1.1) and (1.2), there are the Miura transformations:

$$\mu_1: u = -q_x - q^2$$

and

$$\mu_2: u = q_x - q^2$$

Lemma 1.1 If q is a solution of (1.1), then

$$\begin{split} c &\equiv \Big(\int q dx\Big)_t - (q_{xx} - 2q^3) \\ h &\equiv -\Big(\int e^{-2\int q dx} dx\Big)_t - 2(q_x + q^2)e^{-2\int q dx} - 2c\int e^{-2\int q dx} dx \end{split}$$

^{*} This work supported by National Natural Science Foundation of China, the Scientific foundation of Academy of China and the Associate scheme of the ICTP.

are the functions of t only.

Proof It is not difficult to check

$$c_x = 0 = h_x$$

$$\lim_{x \to 0} (b(x) + \sum_{x \in (x), x} (x) = \sum_{x \in (x)} (x) = 0$$

when q satisfies (1.1).

Theorem 1.1 If q is a solution of (1.1), then

$$\bar{q} = q + r$$
 (1.3)

is a solution of (1.1) as well, where

tion of (1.1) as well, where
$$r = e^{-2\int qdx} / \left(\int e^{-2\int qdx} dx + \varepsilon(t) \right) \tag{1.4}$$

$$\varepsilon(t) = e^{-2\int c(t)dt} \left(\int h(t)e^{2\int c(t)dt}dt + \alpha \right)$$
(1.5)

 α is an arbitrary constant (i.e., $\varepsilon' = -2c\varepsilon + h$).

Proof We can check

$$\bar{q}_t = \bar{q}_{xxx} - 6\bar{q}\bar{q}_x \tag{1.6}$$

Substitute (1.3)-(1.5) into (1.6). Since the hold (0 = (1)) (1.5)

$$\bar{q}_{xxx} - 6\bar{q}^2\bar{q}_x = q_{xxx} - 6q^2q_x - 2r(q_{xx} - 2q^3) + 2r^2(q_x + q^2)$$

and

$$q_t = q_{xxx} - 6q^2q_x$$

we only need to prove

$$r_t = -2r(q_{xx} - 2q^3) + 2r^2(q_x + q^2)$$
(1.7)

Substituting

$$r_t = -2r \left(\int q dx \right)_t - r^2 e^{2 \int q dx} \left(\left(\int e^{-2 \int q dx} dx \right)_t + \varepsilon'(t) \right)$$

into (1.7), we have

$$2c(t)e^{-2\int qdx} - 2rc(t)\int e^{-2\int qdx}dx - rh(t) + r\varepsilon'(t) = 0$$
 (1.8)

Substitute (1.4) into (1.8), (1.8) is reduced to

$$\varepsilon'(t) + 2c(t)\varepsilon(t) - h(t) = 0$$

The theorem is proved.