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Abstract In this paper, we present an invariant group of the MEKdV equation
@i = {eze — 6G°gz. By using this invariant group, we can obtain some new solutions

from a known solution by quadrature.
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It is meaningful but difficult to find the invariant groups of a differential equation.
For the Nonlinear Evolution Equations, only a few invariant groups we have known. For
example, there are four invariant groups of KdV equation: z-translation, {-translation,
Calilean transformation and scalar transformation [1]. In this paper, we present an

invariant group of MKdV equation.

In the following, f fdz (or f fdt) means and arbitrary primitive function of f and

it is taken definitely.
1. MKdV equation

Jt = Qezz — 'E"?E"?:I:
iz related to the KdV equation

Uy = Ugprs + BUU;

Between (1.1) and (1.2), there are the Miura transformations:

and
py iU =gz @

Lemma 1.1 If g is a solution of (1.1}, then

gi= (fgd:r)t—{qﬂ—iqaj

h = —(fe_zfqﬁdm)i — 2(g- + qz}e_zf‘?d“ — che_gf‘?d";d:r

(1.1)

(1.2)
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are the functions of t ondy.
Proof It is not difficult to check

when ¢ satisfies (1.1).
Theorem 1.1 If g is a solution of (1.1), then

g=qg+r (1.3)
is a solution of (1.1) as well, where
ro o2 adz / ( f =2 19z + e(1)) (1.4)
o(t) = e~2J 0% ( f r(t)e? <Ot + o) (1.5)
o is an arbitrary constant (Le, & = —2ce + h).
Proof We can check
Jt = Qzzz — ﬁﬁ‘?ﬁ (16}

Qubstitute (1.3)-(1.5) into (1.6). Since

Goze — 6320z = Gara — 6470z — 27(gzz — 24%) + 2r*(gz + 4°)

and :
gt = Qeez — 007Gz

Gt=q T+ Tt

we only need to prove
ry = —2r(Qez — 2¢°) + 2r%(qz + ¢°) (1.7)

Substituting
7e = —Er(f qd:r:)t — T*Erzgf‘?‘ﬁ’[:(f E"EI‘?‘”d:{:)t +&'(t)
into (1.7), we have
ae(t)e=2 1 1= — 2rc(t) f o2 [ a4t gy — rh(t) 4+ re'(t) = O (18)
Substitute (1.4) into (1.8), (1.8) 1s reduced to |
e'(t) + 2e(t)e(t) — h(t) =0

The theorem is proved.



