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Abstract This article is concerned with the position of blow-up peints, blow up
rate and an isoperimetric problem for the equation v, = Au™ +wf (p>m > 1)ina
convex bounded domain.
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1. Introduction

Recently there is an extensive literature on properties of solutions for nonlinear
parabolic equations, such as blow-up, quenching, dead core and extinction, see [1-4].
Especially more are papers on blow-up behaviors, .

In [5] Galaktionov showed the initial boundary value problem of the equation u, =
Au™ 4 wP in convex bounded domains has global nontrivial solution if p < m; and
the blow-up may occur if p > m. In this article we consider the position of blow-up
points, the asymptotic behavior of the solution near the blow-up time T: furthermore,
we disclose an isoperimetric problem for the above equation. _

Throughout we suppose 1 is a convex bounded domain in R™ with sufficiently
smooth boundary 2} and p > m such that the blow-up appears.

2. The Position of Blow-up Points

Consider the initial boundary value problem
Uy = Au™ + uP (2,8} € Q% (0,T) = Qr
u(z,t) =1 z € N (2.1)
u(z,0) = p(2) > 1

We consider positive solutions of the problem. Then the solution can not take positive
minimum in Q7. So we have u > 1 in Q.

Assume Ap™ o+ " > 0. By the same consideration we have u; > 0 in §p. We shall
show blow-up points can not belong to Q7.
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Take any point yp € 802, Without loss of generality we can choose yy = 0 after
fixing it. Since [} is convex, we may assume 34 is tangent to the hyperplane =y = 0 at
yy = 0 and lies below this plane. Denote

Ot ='{m:m €Eyz1>af, a<0; Oy ={z:(2a—=z,2") e QF},2' = (22, ,Tn) :

Note 2o — 2; < @ < 23, Introduce an auxilliary function
w(z,t) = ulzq,2',t) = u(Ear:x —zq,2' 1)
For = € 1 we have .

we = Af(E)w = g(nw, f(€) =mE™ " g(n) = prP?

where Ea"? L= [‘u[E{; e H!l,iﬂ'r,t:l, ﬂtilzmr:t}ln f > ﬂag = 0.

Simce w = 0 on the plane ¢ = a and w = wu(z1,2',£) > 0 on the boundary (807 N
{z1 < a}) % (0,T), hence w > 0 in Q3 x (0,T); so that actually u(2a — z1,2',t) <
w(xq,2',1). This means {’:?;w = 2—— < 0 on the plane z; = o

1 dzq o
u
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Recall 21 is the outer normal at 4y = 0. So we have following result.
Lemma 2.1  Suppose Ap™ + @f > 0. Then for positive solutions of the problem
(2.1) and for each point Py = (=,t) € 80 x (0,T), there exists a ag < 0. Such that

(v
X + -
PR <0, (z,t) € Q7 % (0,T).

<0, ee N Q< tc T,

kg 1

Because o is arbitrary, there is a ay < 0, such that

Now we can state and prove the main result of this section.

Theorem 2.2 The blow-up points of the solution for the problem (2.1) are con-
tained in a compact subset of the domain .

Proof Denote a = hlﬁfgﬁtglﬂ lag|. It is obvious & > 0. Introduce the auxilliary

function
Ji= vy, Fe(z +a)e”, v=u"
where ¢ and 7 are positive constants to be determined.

By calculation we get

frn—1 p—1

= r—1
Jo—mv m AJ < byJ + (my—plv'm 4+ 2pmev . |by] < k

Choose ¢ sufficiently small and 5 > 1 such that mn < p. The above inequality becomes

mm—1

Ji—mv m AJ-bJ <0, (z,8) Qi x(0,T)

Since v < 0 and J < 0 on {#; = —a} and on t = 0 (recall v, = mu™ 'u,, < 0),
s0 by the maximum principle we get -

J<0 inQF x(0,T)




