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Abstract In this paper, we may make the following:
[W ()] = &(2), te LCdb
Refa(t) — 1 - B(O)]W(th = (t), teM=8D 1T

equal to r:'-ﬂaa.rcliing for a positive solution of nonlinear singular integral equation. The
solvability and discrete approximate solution of the singular integral equation have been
studied.
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1. Introduction

Let D be a domain with boundary 8D and W(z) be an analytic function satisfying
the following conditions

W (t)] = ¢(2), te L Cap (1)
Rela(t) —ib(t)]W(t) =0, te M =8D - L (2)

where ¢(1) is a real valued function on L and a(t), b() are real valued functions on M,
satisfying Holder conditions, respectively. This nonlinear compound boundary valued
problem has been studied by several authorslt:24].

In [1, 2], D is an upper half-plane, L is a bounded interval on real axis. In (3], D
is a domain of unit cirele |z| < 1, L is upper half-circumference T = = 0, M is under

half-circumference.
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In this paper, on the assumptions of [3], we remove condition (2) to a general
Riemann-Hilbert problem. Namely, on 8D : |z| = 1, Wi(t) (t =%, 0 < s < 2m)
satisfying

(W (t)] = ¢(s), 0<s<m (1)
Rela(s) — ib(s)]W(2) = ¥(s), m< g <o (3)

where ¢(s), a(s), b(s), ¥(s) are real valued functions on 8D, satisfying Hélder condi-
tions, §(s) # 0 (Vs € [0,7]), a?(s) + b*(s) # 0 (Vs € [, 27]).

We may make the problems (1)~(3) equal to searching for a positive solution of
nonlinear singular integral equation. The solvability and discrete approximate solution
of the singular integral equation have been studied (see [4-6]).

9. A Standard Solution of Problems (1')-(3) on ¢(s) = 1,
p(s) # 0 '

Definition X (z) is called a standard solution of problems (1")-(3) if it continues ¥
in D+ 8D and X(z) # 0 for any 2.
Suppose that the standard solution of problems (1')-(3) X (z) exists, let

1 D<s<m
(X ()] = @7(s) = { (4)

¢*(s), m<s<2m

from [7] we have
X (z) = exp[S(In ®*(s)) +icl, W BIE D (5)

where §(In@®*(s)) is Schwarz's integral in which density is In ®*(s), ¢ is any real con-
stant.
Since X (z) satisfies (3), it follows that

i

Re[a(s) — ib(s)] - exp [111-:;':*{3} — ;—ﬂ fﬂh In®*{o)ctg da —]—f.!'.::l = 1 8)

T < § < 27

By simplifying, we have

&

. \/az{s] 4+ b2(s) - ¢*(s) - cos [15'(3] - Ei_r f:w In ®* (7 )ctg ; *do + t:] = 'ﬂ?{s} (6)

where 8(s) is an amplitude of complex valued function a(s) — ib(s).
Since X(z) is a standard solution, ¢*(s) > 0 and continues. Hence there exists
sufficiently small positive constant &, such that the function

((5)=T/d"s)i—¢, | T<s<2r (7



