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Abstract In this paper, we consider the asymptotic behaviour of the positive
aolution of elliptic systems with critical growth and obtain the growth rate.
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1. Introduction

In this paper, we consider the eigenvalue problem:

_Ag=vl+pw, v>0inbB - (1.1a)
_Av=v"+vu, u>0inbB (1.1b}
u=0, v=0, on d.B (1.2)
i which B, is the unit ball in RY (N = 4) with houndary ¢B; and
N-w 24+ w
" — . R* :
g e R Ty (mv) € (1.3)
where w € ((N — 4)/2,Nj2), N = 4. Notice that p and g satisfy the relation
ik e
. = N___E (1.4)

—

p+1 q—|—1-_ N

p and ¢ satisfying (1.4) are called critical exponents of (1.1), which is deseribed in [1]

in detail.

To formulate our results, we shall introduce the linear eigenvalue problem

L REE ey 0 in By
= Ayi= AU, uw>0in By
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u=0 =0 on B,

As was shown in [1], there exists a curve € of eigenvalue for which there 1s a solution,
this curve is given by

¢ ={(A,A2) : A > 0,0 > 0 and Ade = 3} (1.5)

where j11 is the principal eigenvalue of A on the unit ball.

By a result of W.C. Troy [2], the solution of the problem (1.1) (1.2) is automatically
radially symmetric if ¢ = 0 and v > 0. This enables us to use ODE techniques.

By [1] (Theorem 6), for p = 0 and v < 0, problem (1.1) (1.2) also has no solution
with (u,v) C (C* {ﬁljjz. If g = Ay and v = Ay there exists no solution. However, the
point (Az, A1;0,0) 1s & hifurcation point from which emanats an unbounded branch of
solution (Az, A1;u,v). In this note, we shall be interested in the asymptotic properties
of 1, v as supermum |u{oc of i, |v|ee of v tends to infinity.

To formulate our results, we first need to introduce the notation of a radial singular
solution of the problem (1.1) (1.2). By this we mean that functions U(x), V(z) which
satisfy (1.1) in By\{0} and (1.2) on 8B, have radial symmetry, and behave near the
origin as

2[*U(z) — Alp,q,N), |’V () = Blp,g, N), as = =0 (1.6)
where
 2g+2 _ 2g+2
{1~pq~1? 'ﬁ_inq—l (1.7a)
Alp.a,N) = [N — 2 — )V — 2 - B)1)/~) (L.7Db)
B(p,a, N) = [?B(N =2 — P (N — 2= B (1.7¢)

Here, we know that Alz|™ and B|z|~" solve
_Au=2v1 Av=vu, uz=0 v> 0 in BiA\{0}

We conject that such solutions are in fact the only possible radial solutions of (1.1)
with an isolated singularity at the origin.

Theorem 1 Suppose p and g satisfy (1.3). There erists a unique singular solution
pair (u(z),v(z)). fts asymptotic behaviour near the origin is given by

u[m} = A(Ph"?: *N::']ﬂ:ra{l T C{Fu i, P"'r“ﬁ:lh + ﬂ{lxlhﬂ
o(z) = B(p,q, N)|e|P(1 + D(p, ¢, Nlal" + o(|z|"))

as & — 0, where h = min{(p — 1)a), (g — 1)8)}, g = hA, A is given in Lemma 2.1, and
if p> g,

(af)E-2/6s-D[g(A2 = (8 — a)}) — B+ g(g +1)]
g2 —af +glg - D — (B —a)?A - a#pq

C{P,EJN}=—




