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Abstract This paper deals with the following semilinear parabolic equations with
nonlinear boundary conditions

ap— Au=flu) - Auz €fl, t >0

%:g{uL zedft, t >0

It is proved that every positive equilibrium solution is a threshold.
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1. Introduction and Main Results

This paper discusses the initial boundary value problem
1y — Aa = fu) — Au, zeN, t>0
du
— = g, t>=0 1.1
an g{ﬂ’}: e % = ( }
u(z,0) = up(zx) = 0, x €l

where 2 ¢ R™ is a bounded domain with C* botndary 841, n is the outward normal
on 99, A > 0, up(z) € L>°(N) is a nonnegative funetion, f(y),9(¥) € c1([0, +oc)) and
satisfy

dy

@) tm f@)fy> N [ o <400 and F) > 1), 6() 2 is(w) for any

| > 1 and y > 0. Moreover there exists Mp > 0 such that g(y) > 0, ¢'(y) = U for
y = Mp.
The stationary problem of (1.1) is

—Au = f(u) — Ay, z €l
{ du (1.2)

EH= ("Ll!.}, z € 95
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For some special functions f(u) and g(u), (1.2) has a positive classical solution. For
example, choose f(u) = v?, g(u) = uI with1 < p < (N+2)/(N-2),1 < g < N/(N-2)
and IV = 3, the assumption (H) holds. Using the results and methods of [1] we have
that (1.2) has a positive solution %(z) € H(Q). By the methods of [2, 3] we can prove
that %(x) is a classical solution of (1.2), i.e. T(z) € CHO) N C*(Q) N W2 () for some
m > N,

Our main aim is to prove that every positive classical solution of (1.2} is a threshold.
That is the following theorem.

Theorem 1.1 Suppose that (H) holds and u(x) is a positive classical solution of
(1.2). We have

(1) If uo(x) = w(x) and ug(z) # U(x), then the solution of (1.1) blows up in finite
time.

(i) If 0 < up(z) < @(x), then the solution of (1.1) exists globally. Moreover, if in
addition ug(z) # %(x), then the global solution u(x,t) of (1.1) satisfies t_lhrqumuix,f} ={

pointwise on (1.

These results not only show that the positive classical solution of {1.2) is unstable
but also show that the ordered positive classical solution of (1.2) is unique. To our
knowledge these results are all new,

Define

1
E(u) = EL | 57 ul®dz + gﬂ]uztir - /ﬂF[u}da: ~ fﬂﬂ Glu)dS.

where F(w) = [ )dy, 6w) = [ gta)ay.

It was proved in [4, 5] that if E(ug) < 0, then the solution of (1.1) blows up in
finite time. If we choose f(u) = w?, g{u) = u? and ug(z) = lu(x) with p,q > 1 and
[ > 0, where %(z) is a positive classical solution of (1.2), then F(u) = wP*1/(p + 1),
G(u) = ut*/(g+1) and

1
lfjg-m?dm——fﬁpﬂdx—lf E:"i"Hde—J—ifﬁzfi:n:B
2Jn 2 Jn 2 Jan 2 Jn

=0 that

2

E(u}—Lf| s =
e o p+1

jp-1 S 1 Ja—1
=£2[(%_p+1)£ﬁprldx+ (E_ q+1) anﬂ_ﬁldgz] o

if I is close to 1. For this case, the results of (4, 5] give nothing about the large time
behaviors of the solution of (1.1). But our theorem asserts that the solution of (1.1)
blows up in finite time when [ > 1, exists globally and tends to zero as ¢ — +oo when
1<1.




