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Abstract In this paper we study fully nonlinear elliptic equations F(D?w,z) = 0

in  C R" with Neumann boundary conditions — = a(z)u under the rather mild

v
structure conditions and without the concavity condition. We establish the global 1=

estimates and the interior W*® estimates for W27() solutions (g > 2n) by introducing
new independent variables, and Tnoreover prove the existence of W2F(2) n CL=(R)

loc

viscosity solutions by using the accretive operator methods, where p € (0,2), & € (0, 1).
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1. Introduction

In this paper we consider the problems of existence for viscosity solutions in W,if[ﬂj
NCH*(£1) of fully nonlinear second order elliptic equations

F(D*u,z)=0, zef (1.1)

with Neumann boundary conditions

du

v
where 0 < p < 2,0 < @ < 1, 02 is a bounded domain in R™, F(r,z) is a function on
R™" % Q, which is not concave with respect to r, v(x) is the unit inner normal on 99
and a(z) is a function on G52,

In [1] G.M. Lieberman and N.S. Trudinger have established the existence and
uniqueness theorems for classical solutions of (1.1), {1.2) under the natural structure
conditions and the concavity condition on F. If F is not concave respect to r, the
existence and uniqueness of C(f2) viscosity solutions can be proved under some as-

sumptions by Perron's method (see e.g [2]-[4]). However, there seem to be few results
on W]zf(ﬁ} N CH*(£2) viscosity solutions to (1.1), (1.2). For Dirichlet problems some

= a(z)u, =z €89 (1.2)
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existence results of strong solutions can be obtained for F “linear at infinity” ([5]), and
for F' “close to linear " ([6]).
We assume that F € C1(R"*™ x 1) satisfies the following structure conditions:

An)? € Frming < A7 nl%n e R (1.3)
|F(0,z)] < p (1.4)
|Fz| < p(1+|r]) (1.5)
|Fp(r,2) — Fe(r,T)| £ wr(lz — ) (1.6)

for all » € R™™ z,% € 0, where A, p are positive constants, wg is a nondecreasing
continuous function on [0, 1], and wr(0) = 0.
Furthermore we assume that a € C*(8Q), and

a = fy (1.7)
: 1ﬂ-|, |az|, |azz| £ (1.8)

for all x € 852, where ug, 11 are positive constants.

Now we state the main result in this paper.

Theorem 1.1 Let 80 € C3, F € CY{R™*™ x ), a € C*(80), and suppose that
F.a satisfy (1.3)-(1.8). Then the problems (1.1), (1.2) have a solution u € ﬁ’ﬁf{ﬁ} M
CLe(Q2) for some p € (0,2), and a € (0,1).

The method we use in the proof of the above theorem involves

(1) solving a sequence of approximate problems by the m-accretive operator tech-
nigue;

(2) making the global Cl estimate and the interior WP estimate for W7 solution
by introducing new independent variable (¢ > 2n};

(3) passing to limits by means of a modification of G. Minty’s Hilbert space method.

In order to state our result conveniently, we introduce the sets

Br(ze) = {z € R* | |z — 20| < R}
B (x0) = {z € Br(za) | Tn > Ton}
BY(z0) = {z € Br(zo) | £n = Ton}

for positive R and o € R". From now on we denote by C the positive constants
depending only on the known quantities, and adopt the summation convention, i.e. the
repeated indices indicate summation from 1 to n or 2n. In Sections 3 and 4, we also
denote by u® the regularization of u.

2. C1*(Q1) Estimate

In this section we derive the C'1=((2) estimate for W((2) (¢ > 2n) solution of the
problem (1.1}, (1.2).

At first, @ priori bound for solution follows from the maximum principle [7, Lemma
1.1].




