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Abstract In this note we give an existence result to a class of variational in-
equalities associated with quasilinear elliptic operators of second order with lower order
terms. We prove “a prior” estimate by an extension of the truncation method to the
nonlinear case.
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1. Introduction

In this note, we consider the variational inequality
ve K, {(Quv—u)>0, YveK (1)

where K is a convex, closed, nonempty set in the Banach space C, W[: EIOYCiR
=

Wh?(Q), 1 < p < oo, which is defined on an open hounded domain @ ¢ RV, N
and

&
ey
2,

{Qu,‘u}=Lﬂf($,u,ﬂu}ﬂwd:ﬂ+/Aﬂ[m,u,ﬂu}ud:c, u,v € B (2)
f

where A; (i = 1,-++,N) and Ay are Carathéodory functions: 2 x R x RV — R and
Q: B — B'. We denote Du = (Dyu,---, Dyu) and we use the sum convention on
i=1,---,N. We consider the existence of the solution of this problem. The structure
of the quasilinear elliptic operator @ is assumed as follows:

(A1) Weakly coercive assumption:

Ai(z,u,£)& = afelP — [f(z) + e(z)]ul?]|€]
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for a.e. z € ), u € Rand £ € RY, where @ > 0 is a constant, § € 0,p=1),e€ Li(5),

: N
with 6§ = p', when p > N; § > p/, whenj::':ﬁ";ﬁ:pN_{;_p}ﬁ__N,whenp{N,

f € LP (). This is weaker than the strong coercive condition, used for instance in

(1]-{3] or [4].

(A2) Growth assumption on the high order term:

”
3 Az, u, £)| < CIEP + e(2) e’ + f(z)

=1
A

forae. €8, u e Rand £ € RN where C is a positive constant, #, e(z) and Fix)
are as in (A1l).
(A3) Growth assumption on the lower order term:

| Ao (x, u, €)| < bo(e)[¢[P™" + eo(a)[ul" + fo(z)

N
for a.e. # €2, u € Rand ¢ € RY, where 0 € [0, ;;_ﬁ], by € LA(2), with A = N,

whenp < N; p < A < 00, whenp = N; A = p, whenp > N, e € L7 (1), with

; N
g=1 whenp > N; o > 1, whenp = N; ¢ = . when p < N,
P ’ g pN — (6o + 1)(N — p) 5

h i 1
fo € LP (1), where 1r%-I—;;;=1,1.=nril;h;¢:r“‘=c::::, when p > N; p* = s for all 5 > 1,

when p = N, and p* = ﬂpr‘,whenp{N.

(A4) Monotonicity E;ssumptimn on the high order term:

[Ai(z,u, €) — As(z, v, m))(& —m) > 0

forae z€Q, uc Randéc RY.
(A5) Monotonicity assumption on the lower order term:

[Aﬂ |:II31 T, E] T Aﬂ(ﬂ:?ﬂ: ‘f}]{u ey U} 2 0

forae. €, ue Rand &£ € RY.

Remark 1 If ||bg]|s is small enough, the operator satisfies the coercive condition
in classical sense, and the result is well known. We are interested here in studying the
case when ||bg||» may be large, so that the coercive condition fails in classical sense.

Remark 2 As an example of an operator satisfying these assumptions we may
give

Qu = —Di[oy| DufP 2 Dswe + ei()|ul® + fi(x)] + bi(z)| DufP~2Dju + eqlu|™ " u + folx)

" The case of p = 2 for the variational inequalities of obstacle type has been discussed
in [5] for linear operators and in [6] for quasilinear ones. In the equation case, whel




