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Abstract This paper is devoted to the study of the least-energy solutions of a
singularly perturbed Neumann problem involving eritical Sobolev exponents. The con-
densation rate is given when n > 4 apd an asymptotic behavior result is obtained.
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1. Introduction

This paper is devoted to the study of the condensation behavior of the least-energy
solutions, as d — 0, of the following singularly perturbed semilinear Neumann problem

dAuw —uw 44" =0 in 2
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where A = Z vl i5 the Laplace operator, {2 1s a bounded smooth domain in B™,
= b

n+ 2

n = 3, v is the unit cuter normal to 312, T = and d > 0 is a constant. By a

s
least-energy solution of (1.1) we mean a (classical) solution of (1.1) which minimizes

the “energy” functional
Ta(u) = E{ri! ul® +uf) - bt el
% 0.l 2 5 Tl

where u4 = max(u,0), among all the solutions of (1.1). Such problems have been
studied by many authors, see, e.g., (1], [2] and references therein.

It was proved in [3] that the least-energy solution ug of (1.1) must exhibit “singular
point-condensation” character on the boundary 812 as d — 0. That is, ug — 0 in 2
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as d — 0, the (global) maximum of ug in 11 is assumed exactly at one point Fy which
must lie on the boundary A and ||ugl| poorny — o0 as d — 0. :

The purpose of this paper is to establish the condensation rate and the location
of the condensation points of ug as d — 0, and give a detailed description of the
convergence under various scalings, in the case when n > 4. Throughout this paper,
wuy will always denote a least-energy solution of (1.1), g and Py will always denote the

maximum and the maximum point of w4 In 00, respectively, i.e. ug(Pa) = ||uallze=(m) =
2

n—3

ag. Let J'jd = {J:!;f
Before stating our main results, we recall Theorem 3.1, in [3] as follows. Let

Hilzx) = 1+—|f:|2— : z e R" (1.2)
S n(n — 2) adlize i '
which is a solution of
AU+ UT =0 (1.3)
in B" satisfying U(0) = 1. Let
n 2/n :
8 =nln— 2w [f‘ (5) /F{TL}] (1.4)
which is the best Sobolev constant in R™ in the following sense:
S = inf U | 7 u|’dz : v € Hy(2) and j; |E|r de = 1} (1:5)
0 !

Denote Bs(P) = {x € R®: [z — P| < é}.

Theorem A [3] Let uy be o least-energy solution of (1.1). Then for d sufficiently
small the mazimum of ug in Q is attained ezactly at one point Py which must lie on
the boundary 942, and we have

(i) ||luwallposqpy — oo as d — 0;

(ii) ug — 0 everywhere in 1 asd—0;

(i) d=% fpuit'dz — %5’42 as d — 0.
Furthermore, for any £ > 0 there erist two positive consiants dy = do(R2,2) and R =
R(12,2) such that for 0 < d < dg the following estimates hold:

ug(z) I [M
Naeall pos oy B0/d

(v) walw) < Ceexp (—’}'ﬂi[ﬂf)x’"ﬂ} for all z € Q\B, gg(Fa). |
where U is given by (1.2), ¥y is o diffeomorphism straightening a boundary portion of
82 around Py (as described in Section 2), ((z) = min {?m,dist (:r:, annn Bvqﬁ{f}d})}J
and C, vo.mo are positive constants only depending on 2.

Remark 1.1 From the proof of Lemma 3.35 in [3] we actually see that, for any
§ > 0 and any = > 0 there is a dy > 0 such that for 0 < d < dp the estimate (v) holds

in 2\B_z(Pa).

(iv) <e forallz € 2N By gp(Pa);




