CONDENSATION OF LEAST-ENERGY SOLUTIONS OF A SEMILINEAR NEUMANN PROBLEM*

Pan Xingbin

(Center for Mathematical Sciences, Zhejiang University, Hangzhou 310027, China) (Received Mar. 15, 1992; revised Dec. 28, 1992)

Abstract This paper is devoted to the study of the least-energy solutions of a singularly perturbed Neumann problem involving critical Sobolev exponents. The condensation rate is given when n > 4 and an asymptotic behavior result is obtained.

Key Words Neumann problem; least-energy solutions. Classification 35B.

1. Introduction

This paper is devoted to the study of the condensation behavior of the least-energy solutions, as $d \to 0$, of the following singularly perturbed semilinear Neumann problem

$$\begin{cases} d\Delta u - u + u^{\tau} = 0 & \text{in } \Omega \\ u > 0 & \text{in } \Omega \\ \frac{\partial u}{\partial v} = 0 & \text{on } \partial \Omega \end{cases}$$
 (1.1)

where $\Delta = \sum_{j=1}^{n} \frac{\partial^2}{\partial x_j^2}$ is the Laplace operator, Ω is a bounded smooth domain in \mathbb{R}^n ,

 $n \geq 3$, v is the unit outer normal to $\partial \Omega$, $\tau = \frac{n+2}{n-2}$ and d > 0 is a constant. By a least-energy solution of (1.1) we mean a (classical) solution of (1.1) which minimizes the "energy" functional

$$J_d(u) = \int_{\Omega} \left\{ \frac{1}{2} (d|\nabla u|^2 + u^2) - \frac{1}{\tau + 1} u_+^{\tau + 1} \right\} dx$$

where $u_{+} = \max(u, 0)$, among all the solutions of (1.1). Such problems have been studied by many authors, see, e.g., [1], [2] and references therein.

It was proved in [3] that the least-energy solution u_d of (1.1) must exhibit "singular point-condensation" character on the boundary $\partial \Omega$ as $d \to 0$. That is, $u_d \to 0$ in Ω

^{*} The work partially supported by National Natural Science Foundation of China and a grant from the State Education Commission of China.

as $d \to 0$, the (global) maximum of u_d in $\overline{\Omega}$ is assumed exactly at one point P_d which must lie on the boundary $\partial \Omega$ and $\|u_d\|_{L^{\infty}(\Omega)} \to \infty$ as $d \to 0$.

The purpose of this paper is to establish the condensation rate and the location of the condensation points of u_d as $d \to 0$, and give a detailed description of the convergence under various scalings, in the case when n > 4. Throughout this paper, u_d will always denote a least-energy solution of (1.1), α_d and P_d will always denote the maximum and the maximum point of u_d in $\overline{\Omega}$, respectively, i.e. $u_d(P_d) = ||u_d||_{L^{\infty}(\Omega)} = \frac{-\frac{2}{n-2}}{n-2}$

 α_d . Let $\beta_d = \alpha_d^{-\frac{n}{n-2}}$.

Before stating our main results, we recall Theorem 3.1, in [3] as follows. Let

$$U(x) = \left[1 + \frac{|x|^2}{n(n-2)}\right]^{-\frac{n-2}{2}}, \quad x \in \mathbb{R}^n$$
 (1.2)

which is a solution of

$$\Delta U + U^{\tau} = 0 \tag{1.3}$$

in \mathbb{R}^n satisfying U(0) = 1. Let

$$S = n(n-2)\pi \left[\Gamma\left(\frac{n}{2}\right) \middle/ \Gamma(n) \right]^{2/n}$$
(1.4)

which is the best Sobolev constant in \mathbb{R}^n in the following sense:

$$S = \inf \left\{ \int_{\Omega} |\nabla u|^2 dx : u \in H_0^1(\Omega) \text{ and } \int_{\Omega} |U|^{\tau+1} dx = 1 \right\}$$
(1.5)

Denote $B_{\delta}(P) = \{x \in \mathbb{R}^n : |x - P| < \delta\}.$

Theorem A [3] Let u_d be a least-energy solution of (1.1). Then for d sufficiently small the maximum of u_d in $\overline{\Omega}$ is attained exactly at one point P_d which must lie on the boundary $\partial \Omega$, and we have

- (i) $||u_d||_{L^{\infty}(\Omega)} \to \infty$ as $d \to 0$;
- (ii) $u_d \rightarrow 0$ everywhere in Ω as $d \rightarrow 0$;

(iii) $d^{-\frac{n}{2}} \int_{\Omega} u_d^{\tau+1} dx \to \frac{1}{2} S^{n/2}$ as $d \to 0$.

Furthermore, for any $\varepsilon > 0$ there exist two positive constants $d_0 = d_0(\Omega, \varepsilon)$ and $R = R(\Omega, \varepsilon)$ such that for $0 < d < d_0$ the following estimates hold:

$$R(\Omega,\varepsilon) \text{ such that for } 0 < d < d_0 \text{ the following estimates hold:}$$

$$\text{(iv)} \left| \frac{u_d(x)}{\|u_d\|_{L^{\infty}(\Omega)}} - U\left[\frac{\Psi_d(x)}{\beta_d \sqrt{d}} \right] \right| < \varepsilon \text{ for all } x \in \Omega \cap B_{\beta_d \sqrt{d}R}(P_d);$$

(v) $u_d(x) < C\varepsilon \exp\left(-\gamma_0\zeta(x)/\sqrt{d}\right)$ for all $x \in Q \setminus B_{\sqrt{d}R}(P_d)$. where U is given by (1.2), Ψ_d is a diffeomorphism straightening a boundary portion of $\partial \Omega$ around P_d (as described in Section 2), $\zeta(x) = \min\left\{\eta_0, \operatorname{dist}\left(x, \partial \Omega \cap B_{\sqrt{d}R}(P_d)\right)\right\}$, and C, γ_0, η_0 are positive constants only depending on Ω .

Remark 1.1 From the proof of Lemma 3.35 in [3] we actually see that, for any $\delta > 0$ and any $\varepsilon > 0$ there is a $d_0 > 0$ such that for $0 < d < d_0$ the estimate (v) holds in $\Omega \backslash B_{\sqrt{d}\delta}(P_d)$.