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Abstract We will investigate the point spectrum on the imaginary axis of the
linearized Boltzmann operator with an external-force potential in a bounded domain
whose boundary is sufficiently smooth. The boundary condition considered is the per-
fectly reflective boundary condition. The point spectrum on the imaginary axis is only
equal to {0}. However, the null space varies with the common axes of symmetry of the
domain and the external-force potential,
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1. Introduction

The nonlinear Boltzmann equation with an external-force potential ¢ = $H(x) has
the form,

affot+ Af = Q(f, f) (1.1)
This equation describes the time evolution of rarefied gas acted upon by the external
force ¥ = —V¢. f = f(t,x,€) is the unknown function denoting the density of gas

particles at time ¢ > 0, at a point = € (0, and with a velocity £ € R®. 9 is a domain
C R? in which the rarefied gas is confined. A and Q(-,-) are the following operators
(see [1-2]):

A= f 4 ?I“vrﬁlﬁ" vé‘;’
g, h) = {1;2]] B(d, 1€ = &) = {gn)h(n)
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where g(n) = g(t,z,n), ete, n = E—(( —¢&)-8)s, v = & +((£ - &) - 8)s, and
costl = (£—£")-s/|¢ =€, s € S%. S? denotes the unit sphere whose center is the origin.
B(#,V) is a nonnegative known function of (#,V) € [0, 7] x [0, +e0). We will impose
the following (see [1-2]):

Assumption 1.1 B(6,V)/|sinfcos@| < e11(V + V'), where ¢;1 > 0 and
< & < 1 are constants independent of (4, V).

Under this assumption we linearize (1.1) around the absolute Maxwellian state
M = exp(—E(z,£)), where E(x,£) = ¢(z) + |£|*/2. Substituting f = M + MY2y in
(1.1), and dropping the nonlinear term, we obtain the linearized Boltzmann equation,

du/0t = Bu (1.2)

where B = A+ e ¥®K, and 4 = —A + (exp(—¢(z)))(—v). The operator B is the
linearized Boltzmann operator. v = »(£) is a multiplication operator, and K is an
integration operator with a symmetric kernel. » and K act on £ only. These operators
satisfy the following (see [1-2]):

Lemma 1.2 (i) There exists a positive constant ¢z such that for any £ € R?,
0 < (e) < e1a(1 + [E]).

(ii) K is a self-adjoint compact operator on L*(RE).

(iii) (—v + K) is a self-adjoint nonposilive operator on LE(Rg}.

(iv) The point spectrum of (—v + K) contains 0, and the null space is spanned by
&5 exp(—IE2/4), § = 1,2,3, exp(—|€[2/4), and |€[2exp(—I¢[2/4), where &; is the j-th
component of £, 1 =1,2,3, i.e, & = (£1,82,63).

It is important to investigate decaying of solutions of (1.2) (see [3, p.768], [4, p.241],
and [5, p.1827]). For this purpose we need to first inspect the point spectrum of
B on the imaginary axis and the corresponding eigenspaces. Because we can obtain
estimates for the decaying of solutions of (1.2) only in function spaces perpendicular to
the eigenspaces corresponding to eigenvalues of B on the imaginary axis (cf. [1-2]).

In [6] we have already investigated this subject when 2 = R?, and by making use of
the result in [6], we have obtained decay estimates for solutions of (1.2) (cf. [3-4]). In
the present paper, we will study that subject when £2 is a bounded domain. The main
result is Theorem 4.1. The boundary condition considered is the perfectly reflective
boundary condition. We assume that the boundary 8 is sufficiently smooth, and that
the traces upon &5 of functions contained in the domain of B are square-integrable
with respect to some measure on 942 x R

In [6], the eigenvalues of B and the corresponding eigenfunctions have only to satisty
the following: k

pv = By (1.3)

In this paper, we obtain g and v which satisfy (1.3), and moreover we need to examine
whether v satisfies the perfectly reflective boundary condition or not. The forms of
eigenfunctions of B are heavily restricted by this fact, and hence we have to perform
more complicated calculations than those in [6].



