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Abstract We give a simple proof of the well-known Hamilton's result [1] on the
heat fAows and harmonic maps from manifolds with boundary using the approach of
Ding-Lin [2].
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Let M be a compact Riemannian manifold with boundary dM, let N be a compact
Riemannian manifold. We denote M U &M by M. Since N can be isometrically
embedded into an Euclidean space R* for some k > n, we may view N as a submanifold
of R*.

For any u € C'(M, N), the energy density of u is defined by e(u) = %[ 7 u|?, the

energy is given by E(u) = f e(u)dV. The Euler-Lagrange equation associated with
M
the energy functional is

r(u) = Av — A(u)(du, du) =0

where A is the Laplace operator on M and A(u) is the second fundamental form of N
in R* at w. By the definition, the solution of this equation is called harmonic,

Hamilton [1] proves the following theorem.

Theorem 1 Let M be a compact Riemannian manifold with boundary, and let
N be a compact Riemannian manifold with nonpositively sectional curvature. Let h :
M — N be any smooth map and ug .M — N a smooth map with wg |ap= h e any
given relative homotopy class. There ezists a continuous map u : M x [0,0¢) =+ N
smooth except at the corner dM X {0} satisfying the following heat equation

X = rtw)
u(-t) lam=h (1)

u(z, 0) = uglzx)




170 Ding Weiyue and Li Jiayu Val.10

on M % [0,c0). For a suitable choice of a sequence t, — oo the maps u(-,t,): M = N
converge in O (M, N) to a harmonic map te : M — N in the same relative homotopy
clnss as fo.

It is proved by Hamilton that (1) has a unique solution u(z,t) for 0 < ¢t < T £ (0, o0
which is smooth except on the corner M x {0}. Here T = T'(up) is the maximal
existence time for the solution w. To prove Theorem 1 it suffices to show that the
solution of (1) satisfies the following a priori estimate

| 7 wlt) CO(RT) < C{E(uo), |luo {TE.E[H}} (2)

for T' >t = some {5 > 0. When M has no boundary, Ding-Lin derive the existence of
an n-obstruction under the assumption that (2) does not hold. They use the rescaling
technigue and the monotonicity inequality [3] for the heat equation. The main purpose
of this note is to show that their ideas also work for the first initial-boundary value
problem (1). I-I+::u.1.1l.n.=.'|.rre:i'.r in our case we have to deal with the solution near the boundary.
Consequently we shall derive the existence of a more general m-obstruction (see the
definition below) if (2) does not hold.

Definition 2 Let RT(-4) = {(z',z™) e R™ | 2™ > -4} where 0 £ § < o0, We
say that v € GE(W x (—oo0,0], N) is an m-obstruction if

(i) it satisfies the heat eguation

%% =rf{r) on RP(—4) x {—oo,0] (3)
(11)
| 7 vl(x,8) < | 9 2](0,0) #£0, V(z,i) € RY(-8) x (—00,0] (4)
(iii) #f & < oo,
U |5Rf|"_‘{—45:|E Const 1:5}

(iv) there exists Ey > 0, such that

Rimmois o lagalt)2dV < By (6)
B (—8)
where BE(—6) = {z € R™||z| < R, z™ > —4}.
In the proof of the existence of an m-obstruction, we also use the rescaling technique.
It is natural that we will use the monotonicity inequality for the first initial-boundary
value problem (1) derived by Chen [4] and Chen-Lin [5] instead of the one obtained by
Struwe [3]. |




