ON THE ZEROS AND ASYMPTOTIC BEHAVIOR OF MINIMIZERS TO THE GINZBURG-LANDAU FUNCTIONAL WITH VARIABLE COEFFICIENT

Ding Shijin

(Department of Mathematics, Suzhou University, Suzhou 215006, China)

Liu Zuhan

(Department of Mathematics, Normal College, Yangzhou University, Yangzhou 225002, China) (Received Jan. 14, 1995; revised Oct. 19, 1995)

Abstract In this paper a partial answer to the fourth open problem of Bethuel-Brezis-Hélein [1] is given. When the boundary datum has topological degree ± 1 , the asymptotic behavior of minimizers of the Ginzburg-Landau functional with variable coefficient $\frac{1}{x_1}$ is given. The singular point is located.

Key Words Ginzburg-Landau functional; asymptotics; vortices.

Classification 35J55, 35Q40.

1. Introduction

Recently, Bethuel-Brezis-Hélein [1-3] have studied the asymptotic behavior for the minimizers u_{ε} of the following Ginzburg-Landau functional in $H_g^1(\Omega; \mathbb{R}^2) \equiv \{v \in H^1(\Omega, \mathbb{R}^2), u \mid_{\partial\Omega} = g\},$

$$E_{\varepsilon}(u) = \frac{1}{2} \int_{\Omega} \left[|\nabla u|^2 + \frac{1}{2\varepsilon^2} (1 - |u|^2)^2 \right] \qquad (1.1)$$

where Ω is a simply connected, star-shaped and bounded smooth domain in R^2 , $g: \partial \Omega \to S^1$ is a smooth map, ε is a small parameter. They proved that there is a subsequence $\varepsilon_n \downarrow 0$ such that

$$u_{\varepsilon_n} \to u_* \text{ in } C^{1+\alpha}_{\text{loc}}(\overline{\Omega} \setminus \{a_1, \cdots, a_{|d|}\}) \text{ and in } C^k_{\text{loc}}(\Omega), \quad \forall k \in \mathbb{N}$$

where $d = \deg(g, \partial\Omega)$ denotes the winding number, $u_* : \Omega \setminus \{a_1, \dots, a_{|d|}\} \to S^1$ is a smooth harmonic map, $a_1, \dots, a_{|d|}$ are the limit positions of the zeros of u_{ε_n} (zeros of u_{ε_n} are called vortices which correspond to the normal points in superconductor) which

minimize the so-called renormalized energy W(b) (see [1]). This problem is related to the phase transition in superconductivity (see [4]).

In their proofs, a key estimate

$$\frac{1}{\varepsilon^2} \int_{\Omega} (1 - |u_{\varepsilon}|^2)^2 \le C \tag{1.2}$$

is derived from the global Pohozaev identity. From (1.2), for ε small enough, one can obtain the uniform upper bound on the number of zeros of u_{ε} . Then the precise lower and upper bounds on the energy $E_{\varepsilon}(u_{\varepsilon})$ lead to a priori estimate for u_{ε} in $H^1_{\text{loc}}(\Omega \setminus \{a_1, \dots a_{|d|}\})$. Finally, they obtained the convergence of u_{ε_n} , subsequence of minimizers, in various norms.

In [5], based on a local version of (1.2), M. Struwe got a similar result to [1] without the restriction of star-shapedness on Ω . There are also some other generations (see [6–10]).

In this paper, we discuss open Problem 4 in [1]. That is,

$$E_{\varepsilon}(u_{\varepsilon}) = \frac{1}{2} \int_{\Omega} \frac{1}{x_1} \left[|\nabla u_{\varepsilon}|^2 + \frac{1}{\varepsilon^2} (1 - |u_{\varepsilon}|^2)^2 \right]$$
 (1.3)

where $\Omega = \{(x_1, x_2) \in R^2 | (x_1 - 1)^2 + x_2^2 < R^2, 0 < R < 1\}$, $u_{\varepsilon} \in H_g^1(\Omega, R^2)$, g is as above. We intend to study the behaviour of minimizers u_{ε_n} as $\varepsilon_n \downarrow 0$. This problem is related to the model of superconducting thin films having variable thickness (see [11]). In contrast with [1], we call our problem Ginzburg-Landau model with variable coefficient.

In our case, some arguments in [1] or [5] do not work. As a try, we only consider a special situation, i.e., $\deg(g,\partial\Omega)=\pm 1$. By a different way, we prove that u_{ε} has unique zero (in Section 3). To get a uniform estimate, we use Lemma 4.4 to prove that $|u_{\varepsilon}| \geq \frac{1}{2}$ in $\overline{\Omega} \backslash B(x_{\varepsilon}, 2\varepsilon^{\beta_1})$, $0 < \beta_1 < 1/2$, x_{ε} is the unique zero of u_{ε} . This is much different from [1] in which they prove $|u_{\varepsilon}| \geq \frac{1}{2}$ in $\overline{\Omega} \backslash B(x_{\varepsilon}, \lambda_0 \varepsilon)$. Next, we prove that $x_{\varepsilon} \to a = (1 + R, 0)$ and for any sequence u_{ε_n} , there is a subsequence, still denoted by u_{ε_n} , such that $u_{\varepsilon_n} \to u_*$ in $C^k(K)$, $\forall k \in \mathbb{N}$, $\forall K \subset\subset \Omega$, where u_* is a harmonic map from $\Omega \to S^1$. The Euler equation of (1.3) is

$$\begin{cases}
-\Delta u_{\varepsilon} + \frac{1}{x_{1}} u_{\varepsilon x_{1}} = \frac{1}{\varepsilon^{2}} u_{\varepsilon} (1 - |u_{\varepsilon}|^{2}) & \text{in } \Omega \\
u_{\varepsilon} \mid_{\partial \Omega} = g
\end{cases}$$
(1.4)

This paper is organized as follows. In Section 2, we shall discuss the case $\deg(g, \partial\Omega) = 0$ which is the base of the case $|\deg(g, \partial\Omega)| = 1$; In Section 3, we prove the existence and uniqueness of the zero of u_{ε} ; In Section 4, through a series of a priori estimates, we establish the asymptotic behavior of u_{ε} , i.e., Theorem 4.1, our main result.