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Abstract In this paper a partial answer to the fourth open problem of Bethuel-
Brezis-Helein [1] is given. When the boundary datum has topological degree 1, the
asymptotic behavior of minimizers of the Ginzburg-Landau functional with variable

cocflicient == 15 given. The singular point is located.
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1. Introduction

Recently, Bethuel-Brezis-Hélein [1-3] have studied the asymptotic behavior for the
minimizers wu, of the following Ginzburg-Landau functional in H; (Q:R%) = v €
H'(Q, R?),u |an= g},

A [ |1vul + 551~ Py (L.1)

where {} is a simply connected, star-shaped and bounded smooth domain in B2, ¢ :
d) — S' is a smooth map, £ is a small parameter. They proved that there is a
subsequence £, | 0 such that
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where d = deg (g,9f2) denotes the winding number, u, : Q\{ay,- - yagp — S is a
smooth harmonic map, aq,--- » @1q are the limit positions of the zeros of Ug, lzeros of
U, are called vortices which correspond to the normal points in superconductor) which
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minimize the so-called renormalized energy W(b) (sce [1]). This problem is related to
the phase transition in superconductivity (see [4]).
In their proofs, a key estimate

5 [ A-hePi <o (12)

is derived from the global Pohozaev identity. From (1.2), for £ small enough, one
can obtain the uniform upper bound on the number of zeros of u.. Then the pre-
cise lower and upper bounds on the energy Le(uc) lead to a priori estimate for w, in
Hy (2, - @41 1)- Finally, they obtained the convergence of wu, _, subsequence of
minimizers, in various norms.

In [5], based on a local version of (1.2), M. Struwe got a similar result to (1] without
the restriction of star-shapedness on . There are also some other generations (see
[6-10]).

In this paper, we discuss open Problem 4 in [1]. That is,

i Efp_ E[wusj + (1~ fuel?) (1.3)

where @ = {(21,22) € B|(z1 - 1)°+ 2} < R20< R< 1), u, € H} (2, R?), g is as
above. We intend to study the behaviour of minimizers Ug,, a8 £ L 0. This problem
15 related to the model of superconducting thin films having variable thickness (see
[11]). In contrast with [1], we call our problem Ginzburg-Landau model with variable
coeflicient.

In our case, some arguments in [1] or [5] do not work. As a try, we only cousicder
a special situation, Le., deg(g, Q) = 41, By a different way, we prove that t. has

unique zero (in Section 3). To get a uniform estimate, we use Lemma 4.4 to prove that

Ug| = 2 in 2 Te,2¢M), 0 < B < 1 2, z. is the unique zero of u,. This is much
5 : q

different from [1] in which they prove lz| > % in O\ B(z,, Age). Next, we prove that
Te =+ a = (1 + R,0) and for any sequence i, , there is a subsequence, still denoted by
Ug,, such that u., = u, in C¥(K), Yk € N, VK ccC €2, where wu, is a harmonic map
from 2 — S'. The Euler equation of (1.3) is

1

H 1 ,
{ — Al + —ugp, = Eug{l — |u|?) in

T (1.4)
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This paper is organized as follows. In Section 2, we shall discuss the case deg (g, #02) =
0 which is the base of the case |deg (9,0€)| = 1; In Section 3, we prove the existence
and uniqueness of the zero of te; In Section 4, through a series of a priori estimates,

we establish the asymptotic behavior of g, Le., Theorem 4.1, our main result.




