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Abstract In this paper we derive a priori estimates in the Campanato space
L38O for solutions of the following parabolic equation
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where {a;;(2, 1)} are assumed to be measurable and satisfy the ellipticity condition. The
proof is based on accurate DeGiorgi-Nash-Moser’s estimate and a modified Poincare’s
inequality. These estimates are very useful in the study of the regularity of solutions
for some nonlinear problems. As a concrete example, we obtain the classical solvability
for a strongly coupled parabolic system arising from the thermistor problem.
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1. Introduction

Let 2 be a bounded domain in B™ with boundary § = 80 in C*! and Q = 02 x (0, T]
with T == (). Consider the following parabolic equation:

7, d
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where a;; satisfies the ellipticity condition:
aolé|? < ai&i€; < Aolé]? for £ € R, 0 <ag < A

It is well known that the DeGiorgi-Nash-Moser estimate plays an essential role in the
atudy of solvability for nonlinear parabolic equations. However, this estimate is often
not enough in dealing with regularity of solutions. On the other hand, the theory of the
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Campanato space £5% is powerful for investigating regularity of solutions for elliptic
equations and systems (cf. [1], [2], etc.). In the present work we would like to derive
the £%#(Q)-estimates for weak solutions of the equation (1.1). It will be seen the
results are also very useful in applications. The core of the proof is based on accurate
DeGiorgi-Nash-Moser’s estimates, For elliptic equations, the theory can be found in
[2]. The fundamental difference from the elliptic theory is that Poincare's inequality
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does not hold for a general function w(z, ) € L2(0,T; H' (1)) (see the notation below).
However, by using the equation and combining (elliptic version) Poincare’s inequality,
we are able to resolve the difficulty. The proof is based on various modifications of
elliptic situation. :

For convenience we introduce some standard notations: a point {2, f) in Q¢ will be
denoted by z. The distance between two points z; = (x1.1;) and 29 = (g, t2) is equal
to

1
max {|zy — za|, |t1 — t2|7 }

For r = 0,
B,(zg) = {z € R" : |z — zo| < r} and Q(20) = Br(zo) x (to — r°, 1]

For a measurable set A C A" x [0, 7] with a finite measure

|
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Al < oo,

In particular, when A = Qv (2),

tUagr = jﬁ 1welz
For p = 0, let (20}
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The space L£**(()) consists of all functions in L?(() such that

[ulaug, < o0

We understand that ¢ N ¢, should be used in the integration whenever (), is not a
subset of Q. £%*(()) is a Banach space with the norm

: " 1
lull2,m0. = {||H||i=|:¢gf] + [ul5,.0, 12




