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Abstract In this paper, we continue to study the equation
Q' + f(¢,88) =0

where O = —87 + A denotes the standard D’Alembertian in 72! and the nonlinear
terms f have the form

1= Tix(@)Qo(s’, %)
JK
with »
Qole, ) = —BipBp + > 8i00ip
i=1

and T} (@) being C™ function of $. In Y. Zhou [1], we showed that the initial value
problem

#{0,2) = dolz), Be(0,z) = ¢y ()
is locally well posed for

¢p € H*FL, e H*

with s = 1 Here, we shall further prove that the initial value problem is locally well
posed for any s = 0. ;
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1. Introduction

In this paper, we continue to study the equation

O¢" + (¢, 08) =0 (1.1)
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where O = — & + A denotes the standard D’Alembertian in R**! and the nonlinear
terms f have the form
=3 Pik(#)Qul(¢”,¢") ' (1.2)
JK
with ;
Qold, ) = —Bddpp + Y Siddhyp (1.3)
i=1

and [ (#) being C*° function of ¢. We call it the equations of wave maps type.
‘We are interested in the problem of minimal regularity of initial conditions for which
the initial value problem

$(0,x) = golz), (0, z) = ¢ (z) (1.4)

15 locally well posed. In Y. Zhou [1], we showed that the problem is locally well posed

for

do € H*F, ¢ € H® (1.5)

with & = é Here, we shall improve it to allow s = 0.

Theorem 1.1 The initial value problem (1.4) for the equation (1.1) is locally well
posed for ¢y € H*F' and ¢ € H® for any s = 0.

In Section 2, we will state and prove a more pref:iﬁe version of Theorem 1.1.

2. Proof of Theorem 1.1

We begin with introducing a space-time norm similar to that in our previous paper
[2]. We rewrite (1.1) as a first order system by letting

¢+ = (8 F vV-1|Dx|)d (2.1)
where
|Dz| = V-4 (2.2)
then
(O £ V=1|Dy|)gps = f (2.3)

Introduce the Fourier integral operators Fy by
Feglt,o) = (2m)72 [ eV Toe2E e, ) (24)

Here and hereafter, ¢ denotes the space Fourier transform of ¢, then it follows from
(2.3) that

GeFydy = Iy f (2.5)




