GLOBAL $W^{2,p}$ $(2 \le p < \infty)$ SOLUTIONS OF GBBM EQUATIONS IN ARBITRARY DIMENSIONS

Liu Yacheng

(Department of Mathematics and Mechanics, Harbin Engineering University, Harbin 150001, China)

Wan Weiming

(Department of Foundation, Dalian Railway Institute, Dalian 116028, China) (Received May 18, 1997; revised Feb. 3, 1998)

Abstract This paper studies the initial-boundary value problem of GBBM equations

$$u_t - \Delta u_t = \operatorname{div} f(u)$$
 (a)

$$u(x,0) = u_0(x) \tag{b}$$

$$u \mid_{\partial\Omega} = 0$$
 (c)

in arbitrary dimensions, $\Omega \subset \mathbf{R}^n$. Suppose that $f(s) \in C^1$ and $|f'(s)| \leq C(1+|s|^{\gamma})$, $0 \leq C(1+|s|^{\gamma})$ $\gamma \leq \frac{2}{n-2}$ if $n \geq 3$, $0 \leq \gamma < \infty$ if n = 2, $u_0(x) \in W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega)$ $(2 \leq p < \infty)$, then $\forall T > 0$ there exists a unique global $W^{2,p}$ solution $u \in W^{1,\infty}(0,T;W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega))$, so the known results are generalized and improved essentially.

Key Words GBBM equation; initial-boundary value; global $W^{2,p}$ solution. Classification 35Q.

1. Introduction

There are already many results [1-7] on the existence and uniqueness of global solutions of the initial-boundary value problem for GBBM equations

$$u_t - \Delta u_t = \operatorname{div} f(u) \tag{1}$$

$$u(x,0) = u_0(x)$$
 (2)

$$u(x,0) = u_0(x)$$

$$u(x,0) = u$$

where $\Omega \subset \mathbb{R}^n$ is a smooth bounded domain. In [5–7] Chen Yunmei, Goldstein and Guo Boling et al. all studied global $W^{2,p}$ solutions of the problem (1)–(3) respectively, the results obtained by them are as follows: Assume that $\partial\Omega$ is sufficiently smooth, $f(s) \in C^2$, f'(0) = 0 and satisfies the hypothesis

(H)
$$|f'(s)| \le C(1+|s|^{\gamma}), \ 0 \le \gamma \le \frac{2}{n-2} \text{ if } n \ge 3, \ 0 \le \gamma < \infty \text{ if } n = 2$$

 $u_0(x) \in W^{2,p}(\Omega) \cap W^{2,2}(\Omega) \cap W^{1,p}_0(\Omega)$, then there exists a unique solution $u \in C([0,\infty); W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega))$, where $\max\left\{1,\frac{n}{2}\right\} . Clearly the condition <math>\frac{n}{2} < p$, which is necessary if one uses the methods of [5–7], is very harsh. For example, according to this condition for the most important case p=2 the values of n only can be $n \leq 3$. So these results are no satisfactory. However up to now for the case $n \geq 2p$ the existence of global $W^{2,p}$ solution of the problem (1)–(3) is still open.

In this paper by using completely different method from [1–7] we study the problem (1)–(3) in arbitrary dimensions. We only assume that $\partial\Omega$ is sufficiently smooth, $f(s)\in C^1$ and satisfies (H), $u_0(x)\in W^{2,p}(\Omega)\cap W_0^{1,p}(\Omega)$, then for any T>0 we obtain a unique global solution $u\in W^{1,\infty}(0,T;W^{2,p}(\Omega)\cap W_0^{1,p}(\Omega))$, where $2\leq p<\infty$. So we have generalized and improved the known results essentially.

In this paper we always assume $\Omega \subset \mathbb{R}^n$ be a sufficiently smooth bounded domain, $\|\cdot\|_p$ denotes $L^p(\Omega)$ norm, $\|\cdot\| \equiv \|\cdot\|_2$, $\|\cdot\|_{k,p}$ denotes $W^{k,p}(\Omega)$ norm and $(u,v) = \int_{\Omega} u(x)v(x)dx$; C, C_i, M, M_i and E_i all denote the constants independent of u.

2. Global $W^{2,2}$ Solutions

Let $\{w_j(x)\}\$ be a system of eigenfunctions of the problem $\Delta w_j + \lambda w_j = 0$ in Ω , $w_j \mid_{\partial\Omega} = 0$ construct approximate solutions of the problem (1)–(3) as follows

$$u_m(x,t) = \sum_{j=1}^{m} \alpha_{jm}(t)w_j(x), \quad m = 1, 2, \cdots$$
 (4)

According to Galerkin method $\alpha_{jm}(t)$ satisfies

$$(u_{mt}, w_s) - (\Delta u_{mt}, w_s) = (\operatorname{div} f(u_m), w_s)$$
(5)

$$\alpha_{jm}(0) = a_{jm}, \ s, \ j = 1, 2, \cdots, m$$
 (6)

Lemma 1 Assume that $f(s) \in C^1$, $u_0(x) \in W_0^{1,2}(\Omega)$, and choose a_{jm} such that $u_m(x, 0) \xrightarrow{W^{1,2}} u_0(x)$, then we have

$$||u_m||^2 + ||\nabla u_m||^2 \equiv ||u_m(0)||^2 + ||\nabla u_m(0)||^2 \le E_1 \quad (0 \le t < \infty)$$
 (7)

Proof Multiplying (5) by $\alpha_{sm}(t)$ and summing it for s we obtain

$$\frac{d}{dt}[\|u_m\|^2 + \|\nabla u_m\|^2] = -2(f(u_m), \text{div } u_m)$$