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Abstract This paper is concerned with the semilinear heat equation uw; = Aw —

&
9 in £ x (0,T) under the nonkinear boundary condition 22 — wP on A0 x (0,T).

Criteria for finite time quenching and blow-up are establishegf quenching and blow-up
sets are discussed, and the rates of quenching and blow-up are obtained.
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1. Introduction

In this paper, we consider the following initial-boundary value problem:

?:&u-u_q, ref) £>=0
gh z €A t>0 (1.1)

di :
w(xz,0) = ug(z), 20

where 0 < p, ¢ < oo, is a bounded domain in B™ with smooth boundary 80, v is the
Ju
outward normal, 0 < ug(z) < M, and E_U = uf on Q.
v
Physically, (1.1) can be treated as a heat conduction model that incorporates the

effects of reaction and nonlinear influx. Mathematically, (1.1) is a combination of the
following two problems:

wy==0u—u"? xefl t>0
% = (), zedf), t>0 (1.2)
uw(x,0) =up(z), z €0

and
iy = A, xef}, t>0
% <iiP, r€dn, t>0 (1.3)
u(z,0) = wp(z), z€0
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As is well known, all solutions of the problem (1.2) quench (solutions reach zero)
in finite time for ¢ > 0 (cf. [1]) while every solution of the problem (1.3) blows up in
finite time f::ur p > 1 (ef. [2]). Moreover, for (1.2), the rate near the quen:::hmg time
T is (T —{) 1 [3] while for (1.3), the rate near blow-up is (T’ - B -1 and blow-up
OCCULS mﬂy on the boundary [2,4]. From these facts, a natural question arises: What is
the behavior of the solution of the problem (1.1)7 Our main objective here 1s to answer
the above question. Specifically, we will show whether the solution of (1.1) quenches
or blows up in finite time depends upon certain conditions on the initial data. We will
also characterize the quenching and blow-up sets, and show that the rate estimates near
quenching and blow-up are the same as those for (1.2) and (1.3, respectively. This
means that even with the presence of the nonlinear influx, the “small” solutions of
(1.1) still behave like those of (1.2) whereas even with the introduction of the negative
reaction, the “large” solutions of (1.1) still behave like those of (1.3).

The plan of the paper is as follows: In Section 2, we establish the criteria for
quenching, while in Section 3, we establish the criteria for blow-up. In Section 4, we
discuss the quenching and blow-up sets, and in Section 5, we derive estimates for the
quenching and blow-up rates.

In the sequel, a solution of (1.1) is always understood in the classical sense.

2. Finite Time Quenching

In this section, we establish two results concerning the finite time quenching of
solutions of the problem (1.1). For that purpose, we should always assume that uglx) >
0 for z € . With a monotonicity assumption, we first present the following result.

Theorem 2.1 Suppose that Hugle) — ugT(x) € 0 for z € Q,p > 0, and g > 0.
Then the solution of (1.1) quenches in finite fime.

Proof Note that the condition on the initial datum implies ug(x,t) = 0 for z € Q

and ¢ > 0. Moreover, if we let v = f ug 'dz — uhdz, then v = 0. Introduce
7! an

F(t) = f u(z, t)de, we find
n

F;(f}=‘/u¢{$,f}d£=f updm—f u_‘?dﬂ:f_’i‘[ uﬁd:tr—f uy Tdz = —
0 (=111 1 a0 Y.

Thus
F(t) £ F(0) -

which means that there exists a point (zq,%g) € £ x (0, 00) such that u(zg, o) = 0.
Next, we present another quenching result by replacing the monotonicity assump-
tion with a relatively weak condition on ug(x).
Theorem 2.2 Assume that ug(z) < 1,p = 1, and g > 0. Then the solution of
(1.1) quenches in finite time.




