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Abstract We consider the solvability of the Dirichlet problem in & unit n-ball for
the p-Laplacian equation with singular coefficients which are singular not only as |z]
tends to 1 but also as |z| tends to 0. The existence and regularity of positive radial
solutions are proved under some conditions related to parameters p, 7, A and g.
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1. Introduction

Let By be the unit ball centered at the origin in R". We consider the existence and
regularity of positive radial solutions of the Dirichlet problem for p-Laplacian equation

{ ~div(|VuP V) = a(lz)lel" (1 = o) l"e, B0} gy
S on dB; .

wherel<p<nA>0,71>—p,qg>na:[0,1] — [0,00) is continuous in [0,1], locally
Hilder continuous in [0,1) and a(1) # 0.

The existence, nonexistence and multiple results for (1.1) with A = 7 = 0 have
been discussed by many mathematicians. Paper [1] treated (1.1) with p = 2 and the
nonlinear term g{z, ) in an arbitrary bounded domain with smo oth boundary, in which
the growth order of g{x,w) in u is, roughly speaking, luje~! for g € (2,2n/(n — 2)).
Later, [2] proved, by the Pohozaev identity, that (1.1) has no nontrivial solution if p = 2
and ¢ > 2n/(n — 2) provided a(|z|) is decreasing. Among others [3] was concerned in
the multiple solutions for (1.1).

Ni [4] concerned in (1.1) withp =2,A =10 and 7 > 0 and extended g up to less than
An+7)/(n—2). Xu and Wu [5] extended the results of [4] to the case of p > 1. T.Seuba
et al.[6] and Dalmasso [7] concerned in (1.1) for the case of p = 2,7 =0 and A > 0.
In this case, the coefficients of the right-hand side of (1.1) are singular as |z] — 1. In
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[6] and [7], ¢ is also less than 2n/(n — 2). Recently, Xuan and Chen 8] discussed (1.1)
with p > 1,7 > 0 and A > 0, and extended g up to less than p(n+ 7}/ (n—p)

In this note, we extend the results of [8] to the case of p > 1,7 > —pand A>=0. In
this case, the coefficient of the right-hand side of (1.1) is singular not only as |z| — 1
but also as |z| — 0. All of the results for the case of p>1in (1.1) may be regarded as
a natural extension of the case p = 2 in (1.1), i.e., the semilinear problem (see [9]).

Our proof for the existence of the weak solutions of (1.1) is based on the following
Lemma and an extension of the embedding lemma in [8] (see Section 2).

Lemma 1.1 (Mountain pass lemma) (cf]1]) Let E be a real Banach space and
I € CY(E,R). Suppose that

(b} I satisfles the Palais-Smale condition, i.e., any sequence {ur} C E, for which
{I{ug)} is bounded and I'(u) — 0 as k — +co, possesses a convergent subsequence;

(5) I{0) = 0 and there is a ug € E\{0} such that I{ug) < 0;

(I3) there are constants p € (0, ||uoll) and & > 0 such that I(w) > « on S,={ue
E: llul = o).

Then I posscsses a critical value C > o Moreover, C can be characterized as

C =inf max I(u)
g€l weyg[0,1]

where

['={g€C([0,1], E) : g(0) = 0, 9(1) = ug}

Using the Mountain pass lemma, we prove an existence theorem of positive radial
weak solutions of the problem (1.1) under certain conditions on the parameters n, p, T, A,
and ¢ which will be given in Section 2 in detail. In Section 3, we show the Cle_regularity
of the obtained solution. In the sequel, €' denotes a positive constant may varying line
by line.

2. The Proof of Existence Theorem

Denote
E={ue W&'ﬁfﬂlﬂu{mj is radially symmetric}

1/p
Iz = ([, 1vulrae)
Ih
then E is a Banach space. Define f by f(t) = 9! for ¢t > 0,f(t) =0 fort <0 and

t
F(t) =fn f(s)ds for t € R. Define the functional on E as

equipped with the norm

Iw) = lolfy - J@), veE (2.1)

_ [ all=Dl=l"
J{T.-!.j = 5 mF[H{iﬂ}]dE? ueEFE {22]




