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Abstract In this paper, we discuss the limit behaviour of solutions for a class of
equivalued surface boundary value problems for parabolic equations. When the equiv-
alued surface boundary !‘" i shrinks to a fixed point on boundary 17, only homopeneonus
Neumann boundary :rmn:i!tmns or Neumann boundary conditions with Dirac function
appear on I,
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1. Introduction and the Main Results

In many practical applications, especially by resistivity well-logging in petroleum
exploitation, the equivalued surface boundary value problem is formulated (ef. [1-
3]). From the formulation of the equivalued surface boundary value condition and its
physical sense, it is corresponding to a source on the equivalued surface boundary.
In the two-dimensional case, this is a line source; in the three- or more-dimensional
case, this is a surface or hypersurface source. When the equivalued surface boundary
shrinks to a point, this type of source is changed into a point source. Case 1: when the
equivalued surface boundary is inside of the domain, the limit behaviour of solutions
had been discussed in [4-6]; Case 2: when the equivalued surface boundary shrinks
to a fixed point on the boundary, the limit behaviour of solutions to elliptic equations
had been discussed in [3, 7-9]. This paper discusses the limit behaviour of solutions to
parabolic equations in Case 2.

€1 is a bounded open set in R" (n = 2,3) with smooth boundary I' = [Zu N, (I}
being the outer boundary and Iy # @ being the interior boundary with Iy N Iy = @).
For any fixed ¢ > 0, we assume that I is partitioned into two subsets I'f and I'f,
furthermore I'f containing the origin (see Fig.1). T is a fixed positive constant, () =
S, By = Iy % (0.T), 1 = N % (0, T), B = IF = (0, T, EE Fl [0
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We consider the following initial-boundary value problem:
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denotes the co-normal derivative and n = {nq,n2,---,n,} denotes the unit outward

normal vector on 7.
We make the following assumptions:

(Hy) ay; € WH=(£2), (i,5 = 1,---,n), and satisfy

Z !::!-t'_e,.'{ﬂ:::lcfgfj = }.u|£|2._ VEER" ae zef} (1.3)

i,7=1

for a fixed positive constant Ag.

(Hz) Suppose that for any small &€ > 0, I'f is con-
nected, and if 0 < g; < g3, then I'T! C if T* and as € poes
to zero, I'f — {0}.

Defining the solution . to the problem (/) by the

transposition method and wsing Green’s formula iy
[Q uevedsdt = [ d(Q)A(0)dt, Ve € L2(Q) (1.4)
0
where v; is the solution to the adjoint problem (I7,) for problem (I.),
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