EXISTENCE AND UNIQUENESS OF RADIAL SOLUTIONS OF QUASILINEAR EQUATIONS IN A BALL*

Wei Gongming and Chen Zuchi

(Department of Mathematics, University of Science and Technology of China, Hefei 230026, Anhui, China)

uniui, Onna

(E-mail: gmwei@mail.ustc.edu.cn; chenzc@ustc.edu.cn)

(Received May. 16, 2002; revised Aug. 8, 2002)

Abstract We consider the boundary value problem for the quasilinear equation

 $\operatorname{div}(A(|Du|)Du) + f(u) = 0, \ u > 0, \ x \in B_R(0), \ u|_{\partial B_R(0)} = 0,$

where A and f are continuous functions in $(0, \infty)$ and f is positive in (0, 1), f(1) = 0. We prove that (1) if f is strictly decreasing, the problem has a unique classical radial solution for any real number R > 0; (2) if f is not monotonous, the problem has at least one classical radial solution for some R > 0 large enough.

Key Words Quasilinear equations; shooting argument; radial classical solution.
2000 MR Subject Classification 35J05, 35J65.
Chinese Library Classification 0175 25, 0175 20

Chinese Library Classification 0175.25, 0175.29.

1. Introduction

In this paper we consider the boundary value problem for the quasilinear equation

$$\begin{cases} \operatorname{div}(A(|Du|)Du) + f(u) = 0, \ u > 0, \quad x \in B_R(0), \\ u = 0, \quad x \in \partial B_R(0), \end{cases}$$
(1.1)

where $B_R = B_R(0)$ is a ball in \mathbb{R}^n with radius R, A(p) is a real, positive and continuous function defined for p > 0. Detailed conditions on A, f will be given later.

Our interesting is in the positive radial solutions of (1.1). In this way, the problem (1.1) is, in fact, the following problem

$$\begin{cases} (Au')' + \frac{n-1}{r}Au' + f(u) = 0, \\ u > 0, \ 0 < r < R, \\ u'(0) = 0, \ u(R) = 0, \end{cases}$$
(1.2)

where $A = A(|u'|), \ u = u(r) = u(|x|).$

^{*}This Project is supported by NNSF of China No. 10071080 and No. 10101024

Definition By a classical solution u of (1.2), we mean that $u \in C^1([0, R])$, $A(|u'|)u' \in C^1([0, R])$ and u satisfies (1.2).

Our main technique is the shooting argument. Firstly, we consider the initial problem n = 1

$$(Au')' + \frac{n-1}{r}Au' + f(u) = 0, \ r > 0; \ u'(0) = 0, \ u(0) = \alpha$$
(1.3)

and we get a maximal existence interval $(0, R(\alpha))$ on which u > 0. Inversely, for a given R > 0, we find a suitable α such that $R = R(\alpha)$.

For the development of radial solutions of quasilinear equations, we refer the readers to [1] and the references therein, for shooting argument, to [1-3].

Now we give the motivation of this paper. In [2], the ground states of quasilinear equations

$$\operatorname{div}(A(|Du|)Du) + f(u) = 0, \ x \in \mathbf{R}^n$$

is considered. A ground state is a positive radial solution such that $u \to 0$ as $|x| \to \infty$. In [2], the conditions on A are similar to ours, but it has two nearly necessary (just as pointed out in [3]) conditions on f: (a) there exists $\beta > 0$ such that F(u) < 0 for $0 < u < \beta$, where $F(u) = \int_0^u f(s) ds$; (b) there exists $\gamma > \beta$ such that f(u) > 0 for $\gamma > u \ge \beta$ and $f(\gamma) = 0$ if $\gamma < \infty$. The two conditions turn out that f must be negative in a neighborhood of zero. But our f is positive in (0, 1). In [1], Moxun Tang considered the existence and uniqueness of the radial solution of the problem for the m - Laplacian quasilinear equation

$$\begin{cases} \operatorname{div}((|Du|)^{m-2}Du) + f(u) = 0, \ x \in \mathbf{R}^n\\ u > 0, \ x \in R^n; \ u \to 0 \text{ as } |x| \to \infty, \end{cases}$$

where 1 < m < n. This problem is a special case of the one considered in this paper. Although f in [1], different from [3], is positive near zero, yet an additional requirement on f is added that there exists $\eta \in (0, \gamma)$ such that $\Phi \leq 0$ on $(0, \eta)$, and $\Phi \geq 0$ on (η, γ) , where $\Phi(u) = \left(\frac{F(u)}{f(u)}\right)' - \frac{1}{m} + \frac{1}{n}$. The existence of such an η in [1] is as important as the existence of β in [2] but it is not easy to determine them in applications. They used this assumption to get a priori estimate so the shooting method can be effective. We noticed that the technique in [3] depends on n which is exactly the dimension of dimensional space. So, the technique in [3] cannot be used here directly.

Different from [1, 2] we do not assume the existence of the parameters β, γ . When f is decreasing, motivated by [4, 5], we get that the problem (1.1) has a unique classical radial solution for any positive real number R > 0; when f is not decreasing, motivated by [6, 7], using a method similar to the blow-up method, we obtained that (1.1) has a classical radial solution when radius R is large enough.

The following material is organized as follows: in Section 2 we consider the initial problem (1.3) and give some properties of the solution, especially the properties of the existence radius $R(\alpha)$ of the solution. Section 3 proves the existence and uniqueness