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Abstract The singularly perturbed problem for the semilinear elliptic equations
is considered. Under appropriate conditions, by using the comparison theorem, the
existence and asymptotic behavior of solution for the boundary value problems are
studied.
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Consider the singularly perturbed problem in a strip domain Ωn ≡ {x | 0 < xn <

a}as follows:
εLu + L1u = f(x, u, Tu, ε), (1)

u = g1(x1, · · · , xn−1), xn = 0, (2)

u = g2(x1, · · · , xn−1), xn = a, (3)

where

L ≡
n∑

j,k=1

ajk(x)
∂2

∂xj∂xk
+

n∑

j=1

bj(x)
∂

∂xj
,

n∑

j,k=1

ajk(x)ξjξk ≥ λ
n∑

j=1

ξ2
j , ∀ξj ∈ R, λ > 0,

L1 = −
n∑

j=1

cj(x)
∂

∂xj
,

Tu =
∫

Ω
K(x, y)u(y)dy,
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where ε is a positive parameter,x = (x1, x2, · · · , xn) ∈ Ωn. The authors have studied
a class of singularly perturbed boundary value problems for the elliptic equations in
[1-4]. This paper involves singularly perturbed problem in an unbounded domain.

Assume that
[H1] the coefficients of L and L1 are bounded smooth functions in Ω ≡ {0 ≤ xn ≤

a};
[H2] f, g1, g2 and their derivatives until m-th order are bounded continuous func-

tions with regard to their variables;
[H3] cn(x) > 0, min{fy(x, y, z, ε), fz(x, y, z, ε)} ≥ b0 > 0,

∫
Ω K(x, y)dy ≥ M, M is a

positive constant;
[H4] the reduced problem of (1)-(3)

L1u = f(x, u, Tu, 0),

u = g1(x1, · · · , xn−1), xn = 0

has a bounded smooth solution U0 in Ωn.

We now construct the formal asymptotic solution of the problem (1)-(3) being

U ∼
∞∑

i=0

Uiε
i. (4)

Substituting (4) into (1),developing f in ε,equating coefficients of like powers of ε

respectively, we obtain

L1Ui − fy(x,U0, TU0, 0)Ui − fz(x,U0, TU0, 0)TUi = −LUi−1 + Fi,

Ui = 0, xn = 0, i = 1, 2, · · · ,
where Fi are determined functions of Uγ(γ ≤ i−1), and their constructions are omitted.
The above and below, the values of terms for the negative subscript are zero. From
above linear equation and cn(x) > 0, we can solve Ui successively. From (4),we obtain
the outer solution U for the original problem. But it may not satisfy the boundary
condition (3), so we need to construct the boundary layer term V near xn = a.

We lead into variables of multiple scales [5]:

τ =
h(x1, · · · , xn)

ε
, ρ = xn, (5)

where h(x1, · · · , xn) is a function to be determined. For convenience, we still substitute
xn for ρ below. From (5),we have

L =
1
ε2

K0 +
1
ε
K1 + K2, L1 =

1
ε
P0 + P1, (6)

where

K0 = annh2
xn

∂2

∂τ2
,


