
J. Partial Diff. Eqs. 15(2002), 89–96
c©International Academic Publishers Vol.15 No.1

ASYMPTOTIC BEHAVIOR OF GLOBAL SMOOTH SOLUTIONS
TO THE EULER-POISSON SYSTEM IN SEMICONDUCTORS

Ju Qiangchang
(Academy of Mathematics and Systems Sciences, CAS,

Beijing 100080, China)
(E-mail: juqc@math08.math.ac.cn)

(Received Sep. 27, 2001)

Abstract In this paper, we establish the global existence and the asymptotic
behavior of smooth solution to the initial-boundary value problem of Euler-Poisson
system which is used as the bipolar hydrodynamic model for semiconductors with the
nonnegative constant doping profile.
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1. Introduction

We are concerned with the large time behavior of smooth solutions to the one-
dimensional Euler-Poisson system which is used as the bipolar hydrodynamic model
for semiconductors in the case of two carriers, i.e. electron and hole. Namely

nt + (nu)x = 0, (1.1)

ht + (hv)x = 0, (1.2)

(nu)t + (nu2 + p(n))x = nφx −
nu

τn
, (1.3)

(hv)t + (hv2 + q(h))x = −hφx −
hv

τh
, (1.4)

φxx = n− h− d(x), (1.5)

(t, x) ∈ (0,∞)× (0, 1), where (n, h) and (u, v) are densities and velocities for electrons
and holes, respectively, j = nu and k = hv stand for the electron and hole current
densities, φ denotes the electrostatic potential and we denote E = φx as the electric
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field, and d(x) describes fixed charged background ions. The pressure functions p(n)
and q(h) are taken as

p(n) =
nγn

γn
, γn > 1, q(h) =

hγh

γh
, γh > 1. (1.6)

τn and τh are the momentum relaxation times for electrons and holes, respectively. τn
and τh are constants in the present paper. Furthermore, τn = τh = 1 for convenience.

Recently, the hydrodynamic model of semiconductors has attracted a lot of atten-
tion, due to its function to describe hot electron effects which are not accounted for in
the classical drift-diffusion model. Rigorous results have been obtained in various pa-
pers. Most of them are concerned with the unipolar case — the case of one carrier type,
i.e. electron. Also, there are a few results on the bipolar case which is of more impor-
tance and physical meaning. Fang and Ito [1] showed the existence of weak solutions to
the system (1.1)-(1.5) using the viscosity argument. Natalini [6], Hsiao and Zhang [4],
considered the relaxation limit problem from the bipolar hydrodynamic model to the
drift-diffusion equations. Zhu and Hattori [7] showed the existence of smooth solutions
to Cauchy problem of (1.1)-(1.5) and discussed the asymptotic stability of the steady
state solution, when the doping profile is close to zero.

In present paper, we consider the initial boundary value problems for (1.1)-(1.5)
with the following initial data

(n, h, j, k)(x, 0) = (n0, h0, j0, k0)(x), x ∈ (0, 1), (1.7)

and the insulating boundary conditions

j(0, t) = 0 = j(1, t), (1.8)

k(0, t) = 0 = k(1, t), (1.9)

E(0, t) = 0. (1.10)

To provide some insights into the above evolutionary problem, we take the doping
profile d(x) as a nonnegative constant d. Our main purpose in this paper is to in-
vestigate the global existence and the asymptotic behavior of the smooth solution to
(1.1)-(1.5) and (1.7)-(1.10). More precisely, we prove that when the initial data are
small perturbations of a stationary solution to the system, the global smooth solution
to (1.1)-(1.5) and (1.7)-(1.10) exists and tends to the stationary solution, as t → ∞,
exponentially. The steady state solution concerned satisfies the following system:

p(n̄)x = n̄Ē, (1.11)

q(h̄)x = −h̄Ē, (1.12)

Ēx = n̄− h̄− d, (1.13)


