ASYMPTOTIC BEHAVIOR OF GLOBAL SMOOTH SOLUTIONS TO THE EULER-POISSON SYSTEM IN SEMICONDUCTORS

Ju Qiangchang (Academy of Mathematics and Systems Sciences, CAS, Beijing 100080, China) (E-mail: juqc@math08.math.ac.cn)

(Received Sep. 27, 2001)

Abstract In this paper, we establish the global existence and the asymptotic behavior of smooth solution to the initial-boundary value problem of Euler-Poisson system which is used as the bipolar hydrodynamic model for semiconductors with the nonnegative constant doping profile.

Key Words Bipolar hydrodynamic model, semiconductors, asymptotic, smooth solution.

2000 MR Subject Classification 35L65, 76X05, 35M10, 35L70, 35Q60 **Chinese Library Classification** 0175.29.

1. Introduction

We are concerned with the large time behavior of smooth solutions to the onedimensional Euler-Poisson system which is used as the bipolar hydrodynamic model for semiconductors in the case of two carriers, i.e. electron and hole. Namely

$$n_t + (nu)_x = 0, (1.1)$$

$$h_t + (hv)_x = 0, (1.2)$$

$$(nu)_t + (nu^2 + p(n))_x = n\phi_x - \frac{nu}{\tau_n},$$
(1.3)

$$(hv)_t + (hv^2 + q(h))_x = -h\phi_x - \frac{hv}{\tau_h},$$
(1.4)

$$\phi_{xx} = n - h - d(x), \tag{1.5}$$

 $(t,x) \in (0,\infty) \times (0,1)$, where (n,h) and (u,v) are densities and velocities for electrons and holes, respectively, j = nu and k = hv stand for the electron and hole current densities, ϕ denotes the electrostatic potential and we denote $E = \phi_x$ as the electric

Vol.15

field, and d(x) describes fixed charged background ions. The pressure functions p(n) and q(h) are taken as

$$p(n) = \frac{n^{\gamma_n}}{\gamma_n}, \ \gamma_n > 1, \quad q(h) = \frac{h^{\gamma_h}}{\gamma_h}, \ \gamma_h > 1.$$

$$(1.6)$$

 τ_n and τ_h are the momentum relaxation times for electrons and holes, respectively. τ_n and τ_h are constants in the present paper. Furthermore, $\tau_n = \tau_h = 1$ for convenience.

Recently, the hydrodynamic model of semiconductors has attracted a lot of attention, due to its function to describe hot electron effects which are not accounted for in the classical drift-diffusion model. Rigorous results have been obtained in various papers. Most of them are concerned with the unipolar case — the case of one carrier type, i.e. electron. Also, there are a few results on the bipolar case which is of more importance and physical meaning. Fang and Ito [1] showed the existence of weak solutions to the system (1.1)-(1.5) using the viscosity argument. Natalini [6], Hsiao and Zhang [4], considered the relaxation limit problem from the bipolar hydrodynamic model to the drift-diffusion equations. Zhu and Hattori [7] showed the existence of smooth solutions to Cauchy problem of (1.1)-(1.5) and discussed the asymptotic stability of the steady state solution, when the doping profile is close to zero.

In present paper, we consider the initial boundary value problems for (1.1)-(1.5) with the following initial data

$$(n, h, j, k)(x, 0) = (n_0, h_0, j_0, k_0)(x), \quad x \in (0, 1),$$

$$(1.7)$$

and the insulating boundary conditions

$$j(0,t) = 0 = j(1,t),$$
(1.8)

$$k(0,t) = 0 = k(1,t), \tag{1.9}$$

$$E(0,t) = 0. (1.10)$$

To provide some insights into the above evolutionary problem, we take the doping profile d(x) as a nonnegative constant d. Our main purpose in this paper is to investigate the global existence and the asymptotic behavior of the smooth solution to (1.1)-(1.5) and (1.7)-(1.10). More precisely, we prove that when the initial data are small perturbations of a stationary solution to the system, the global smooth solution to (1.1)-(1.5) and (1.7)-(1.10) exists and tends to the stationary solution, as $t \to \infty$, exponentially. The steady state solution concerned satisfies the following system:

$$p(\bar{n})_x = \bar{n}\bar{E},\tag{1.11}$$

$$q(\bar{h})_x = -\bar{h}\bar{E},\tag{1.12}$$

$$\bar{E}_x = \bar{n} - \bar{h} - d, \tag{1.13}$$