GLOBAL APPROXIMATELY CONTROLLABILITY AND FINITE DIMENSIONAL EXACT CONTROLLABILITY FOR PARABOLIC EQUATION*

Sun Bo and Zhao Yi
(Mathematic Department of Zhongshan University, Guangzhou 510275, China)
(Received Sep. 10, 2001; revised Nov. 27, 2001)

Abstract

We study the globally approximate controllability and finite-dimensional exact controllability of parabolic equation where the control acts on a mobile subset of Ω,or, a curve in $Q=\Omega \times(0, T)$.

Key Words Parabolic Equation; Controllability.
2000 MR Subject Classification 35K, 93B.
Chinese Library Classification 0175.

1. Introduction

Let Ω be a bounded, open, connected set in R^{n} with boundary $\partial \Omega$. Consider the following homogeneous Dirichlet problem for the parabolic equation:

$$
\begin{align*}
\frac{\partial u}{\partial t} & =\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x, t) \frac{\partial u}{\partial x_{j}}\right)-\sum_{i=1}^{n} b_{i}(x, t) \frac{\partial u}{\partial x_{i}}-a(x, t) u \\
& \text { in } \quad Q=(0, T) \times \Omega \tag{1.1a}\\
\left.u\right|_{\Sigma} & =0 \quad \text { in } \quad \Sigma=\partial \Omega \times(0, T),\left.\quad u\right|_{t=0}=u_{0} \quad \text { in } \quad \Omega
\end{align*}
$$

under the condition of uniform ellipticity, namely,

$$
\begin{equation*}
\mu \sum_{i=1}^{n} \xi_{i}^{2} \leq \sum_{i, j=1}^{n} a_{i j}(x, t) \xi_{i} \xi_{j} \forall \xi_{i} \in R \quad \text { a.e. } \quad \text { in } \quad Q, \mu>0 \tag{1.1b}
\end{equation*}
$$

where $a_{i j}=a_{j i}, a_{i j} \in L^{\infty}(Q), i, j=1, \ldots, n$. To guarantee the solvability and unique continuation, some other assumptions are needed [1-2]:

$$
\begin{equation*}
u_{0} \in L^{2}(\Omega),\left\|\sum_{i=1}^{n} b_{i}^{2}, a\right\|_{q, r, Q} \leq \mu, \quad \frac{1}{r}+\frac{n}{2 q}=1-k \tag{1.2a}
\end{equation*}
$$

[^0]\[

\left\{$$
\begin{array}{l}
q \in\left[\frac{n}{2(1-k)}, \infty\right], r \in\left[\frac{1}{1-k}, \infty\right], 0<k<1, \quad \text { for } \quad n \geq 2 \tag{1.2b}\\
q \in[1, \infty], r \in\left[\frac{1}{1-k}, \frac{2}{1-2 k}\right], 0<k<\frac{1}{2}, \quad \text { for } \quad n=1
\end{array}
$$\right.
\]

where $\|z\|_{q, r, Q}=\left(\int_{0}^{T}\left(\int_{\Omega}|z|^{q} d x\right)^{\frac{r}{q}} d t\right)^{\frac{1}{r}}$;

$$
\begin{gather*}
\frac{\partial a_{i j}}{\partial t} \in L^{1}\left(0, T ; L^{\infty}(\Omega)\right), b_{i}, a \in L^{\infty}(Q) \tag{1.3}\\
u_{0} \in H_{0}^{1}(\Omega), \partial \Omega \in C^{2}, \frac{\partial a_{i j}}{\partial x_{k}}, b_{i}, a \in L^{\infty}(Q) \tag{1.4}
\end{gather*}
$$

The conditions (1.2) ensure the existence and uniqueness of a solution to (1.1) from the space $C\left([0, T] ; L^{2}(\Omega)\right) \cap H_{0}^{1,0}(Q)$ (see Ladyzenskaja [1]), which satisfies the energy estimate:

$$
\begin{equation*}
\|u\|_{C\left([0, T] ; L^{2}(\Omega)\right)}+\|u\|_{H^{1,0}(Q)} \leq c\left\|u_{0}\right\|_{L^{2}(\Omega)} \tag{1.5}
\end{equation*}
$$

Here c depends on T and the parameters in (1.1b), (1.2). Under the assumptions (1.4) this solution lies in $H_{0}^{2,1}(Q)$. The assumptions (1.3) allow one to use the backward uniqueness result.

The reference [2] gives the following unique continuation results:
Proposition 1.1 Let $n \leq 3$. Given $T>\epsilon>0$, there exists a measurable curve $(\epsilon, T) \ni t \rightarrow \hat{x}(t) \in \bar{\Omega}$ such that every solution $u \in H_{0}^{2,1}(Q)$ to (1.1), (1.3), (1.4) which vanishes along $\hat{x}(\cdot)$ and vanishes in Q.

Proposition 1.2 Given $T>\epsilon>0$, there exists a set-valued map $(\epsilon, T) \ni t \rightarrow$ $S(t) \subset \Omega, \operatorname{mes}\{S(t)\}>0$ such that every solution $u \in C\left([0, T] ; L^{2}(\Omega)\right) \cap H_{0}^{1,0}(Q)$ to (1.1), (1.2), (1.3) which satisfies the equality $\int_{S(t)} u d x=0$ on (ϵ, T) vanishes in Q.

Furthermore, [2] studies the approximate controllability of the following control system:

$$
\begin{align*}
\frac{\partial \varphi}{\partial t}= & \sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x, T-t) \frac{\partial \varphi}{\partial x_{j}}\right) \\
& +\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(b_{i}(x, T-t) \varphi\right)-a(x, T-t) \varphi+B(T-t) v(t) \quad \text { in } Q \tag{1.6}\\
\varphi= & 0 \quad \text { in } \Sigma,\left.\quad \varphi\right|_{t=0}=0
\end{align*}
$$

where $B(\cdot)$ is a linear operator defined on a linear manifold $V \subseteq L^{2}(0, T)$ by one of the following formulas:

$$
B(T-t) v(t)=v(t) \times\left\{\begin{array}{l}
1, \text { if } \quad x \in S(T-t), \tag{1.7}\\
0, \text { if } \quad x \notin S(T-t),
\end{array} \quad S(t) \subset \Omega \quad \text { a.e. in } \quad[0, T]\right.
$$

or

$$
\begin{equation*}
B(T-t) v(t)=v(t) \delta(x-\hat{x}(T-t)), \quad \hat{x}(t) \in \bar{\Omega} \quad \text { a.e. in } \quad[0, T] \tag{1.8}
\end{equation*}
$$

[^0]: *Project supported by the National Natural Science Foundation of China and Guangdong Province Science Foundation of China

