GENERALIZED QUASILINEARIZATION METHOD FOR A CLASS OF SEMILINEAR ELLIPTIC SYSTEMS*

Xie Feng (Department of Mathematics, Shanghai Jiaotong University, Shanghai 200240, China.) (E-mail: xfeng@sjtu.edu.cn) (Received Jan. 8, 2002)

Abstract In this paper, the method of generalized quasilinearization is extended to a class of semilinear elliptic systems, and the sequences which are the solutions of linear differential equations that converge to the unique solution of the given semilinear elliptic system are obtained.

Key Words semilinear elliptic systems; boundary value problem; generalized quasilinearization

2000 MR Subject Classification 35A35, 35J55. **Chinese Library Classification** 0175.25.

1. Introduction

The method of quasilinearization was disscussed by Bellman [1], Lakshmikantham and Leela [2] and Lakshmikantham and Vatsala [3,4]. In this paper, it is extended to a class of semilinear elliptic systems.

Consider the following semilinear elliptic system

$$L_i u_i = f_i(x, U), \quad x \in \Omega, \tag{1}$$

$$B_i u_i = \varphi_i(x), \quad x \in \partial\Omega, \tag{2}$$

where $U \equiv (u_1, \dots, u_n)$, $\Omega \subset \mathbb{R}^N$ is a bounded domain with the boundary $\partial \Omega$, and L_i and B_i are elliptic and boundary operators given, respectively, by

$$L_{i}u_{i} \equiv -\sum_{j,k=1}^{N} a_{jk}^{(i)}(x) \frac{\partial^{2}u_{i}}{\partial x_{j}\partial x_{k}} + \sum_{j=1}^{N} b_{j}^{(i)}(x) \frac{\partial u_{i}}{\partial x_{j}} + c^{(i)}u_{i},$$
$$B_{i}u_{i} \equiv \alpha_{i}(x) \frac{\partial u_{i}}{\partial \nu} + \beta_{i}(x)u_{i},$$

where ν is the unit outer normal vector on $\partial\Omega$, and $\alpha_i(x)$, $\beta_i(x) \in C^{1,\alpha}[\partial\Omega]$, $\beta_i(x) > 0$ and $\partial\Omega$ belongs to the $C^{2,\alpha}$. Moreover, it is assumed that for each $i = 1, \dots, n$, L_i is uniformly elliptic in Ω and $a_{jk}^{(i)}, b_j^{(i)}, c^{(i)} \in C^{\alpha}[\bar{\Omega}], c^{(i)}(x) \geq 0, \varphi_i \in C^{1,\alpha}(\bar{\Omega}),$ $f_i \in C^{\alpha}(\bar{\Omega} \times R^n)$ in Ω .

^{*}The project is supported by The National Natural Science Foundation of China (No. 10071048).

2.Comparison Lemmas

We first give the following comparison result.

Lemma 1 Let $W, V \in C^2(\overline{\Omega})$ be lower and upper solutions of (1)-(2), that is, W, V satisfy

$$L_i w_i \leq f_i(x, Z) \text{ in } \Omega, \quad B_i w_i \leq \varphi_i(x) \text{ on } \partial\Omega, \text{ for } Z \in W, V > [5] \text{ with } z_i = w_i,$$

$$L_i v_i \geq f_i(x, Z) \text{ in } \Omega, \quad B_i v_i \geq \varphi_i(x) \text{ on } \partial\Omega, \text{ for } Z \in W, V > \text{ with } z_i = v_i.$$

Suppose further that

$$|f_i(x,\tilde{U}) - f_i(x,\tilde{V})| \le K_i |\tilde{U} - \tilde{V}|, \quad \tilde{U}, \tilde{V} \in \langle W, V \rangle,$$

where $|\tilde{U} - \tilde{V}| = |\tilde{u}_1 - \tilde{v}_1| + \dots + |\tilde{u}_n - \tilde{v}_n|, \quad c^{(i)}(x) > K_i \ge 0.$ Then $W \leq V$ [5], namely, $w_i \leq v_i$, $i = 1, \dots, n, x \in \overline{\Omega}$.

Proof Let Y(x) = W(x) - V(x), namely, $y_i(x) = w_i(x) - v_i(x)$, $i = 1, \dots, n$. If $y_i(x) \leq 0$ is not true in Ω , then there exists an $\varepsilon > 0$ and $x_0 \in \overline{\Omega}$ such that

$$w_i(x_0) = v_i(x_0) + \varepsilon, \quad w_i(x) \le v_i(x) + \varepsilon, \quad x \in \overline{\Omega}.$$

If $x_0 \in \partial \Omega$, then $\frac{\partial w_i(x_0)}{\partial \nu} \ge \frac{\partial v_i(x_0)}{\partial \nu}$ and hence we can get

$$Bw_i(x_0) = \alpha_i(x_0) \frac{\partial w_i(x_0)}{\partial \nu} + \beta_i(x_0)w_i(x_0)$$

$$\geq \alpha_i(x_0) \frac{\partial v_i(x_0)}{\partial \nu} + \beta_i(x_0)[v_i(x_0) + \varepsilon] > Bv_i(x_0),$$

which is a contradiction. If $x_0 \in \Omega$, then $\frac{\partial w_i(x_0)}{\partial x_j} = \frac{\partial v_i(x_0)}{\partial x_j}$, $\sum_{j,k=1}^N \left(\frac{\partial^2 w_i(x_0)}{\partial x_j \partial x_k} - \frac{\partial^2 v_i(x_0)}{\partial x_j \partial x_k}\right) \lambda_j \lambda_k \leq 0$, where λ_j, λ_k are positive constants. Then by using the assumptions it follows that

 $f_i(x_0, W(x_0)) > L_i w_i(x_0) > L_i [v_i(x_0) + \varepsilon] > f_i(x_0, V(x_0)) + c^{(i)}(x_0)\varepsilon$

$$f_i(x_0, W(x_0)) \ge L_i W_i(x_0) \ge L_i [v_i(x_0) + \varepsilon] \ge f_i(x_0, V(x_0)) + c^{(i)}(x_0)\varepsilon$$

$$\ge f_i(x_0, W(x_0)) + \left[c^{(i)}(x_0) - K_i\right]\varepsilon,$$

which contracts with $c^{(i)}(x) > K_i$. Hence the claim is true and the proof is complete.

Evidently one has the following corollary to Lemma 1.

Corollary 2 For any $P = (p_1, \dots, p_n)$ with $p_i \in C^2(\Omega)$ satisfying

$$L_i^{(c_0)} p_i \equiv -\sum_{j,k=1}^N a_{jk}^{(i)}(x) \frac{\partial^2 p_i}{\partial x_j \partial x_k} + \sum_{j=1}^N b_j^{(i)}(x) \frac{\partial p_i}{\partial x_j} + c_0^{(i)} p_i \le 0, \quad x \in \Omega,$$

$$B_i p_i \le 0, \quad x \in \partial\Omega,$$
(3)

where $c_0^{(i)}(x) > 0$. Then one has $p_i(x) \leq 0$ in $\overline{\Omega}$.