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Abstract In this paper, the method of generalized quasilinearization is extended
to a class of semilinear elliptic systems, and the sequences which are the solutions of
linear differential equations that converge to the unique solution of the given semilinear
elliptic system are obtained.
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1. Introduction

The method of quasilinearization was disscussed by Bellman [1], Lakshmikantham
and Leela [2] and Lakshmikantham and Vatsala [3,4]. In this paper, it is extended to
a class of semilinear elliptic systems.

Consider the following semilinear elliptic system

Liui = fi(x,U), x ∈ Ω, (1)

Biui = ϕi(x), x ∈ ∂Ω, (2)

where U ≡ (u1, · · · , un), Ω ⊂ RN is a bounded domain with the boundary ∂Ω, and Li

and Bi are elliptic and boundary operators given, respectively, by

Liui ≡ −
N∑

j,k=1

a
(i)
jk (x)

∂2ui

∂xj∂xk
+

N∑
j=1

b
(i)
j (x)

∂ui

∂xj
+ c(i)ui,

Biui ≡ αi(x)
∂ui

∂ν
+ βi(x)ui,

where ν is the unit outer normal vector on ∂Ω, and αi(x), βi(x) ∈ C1, α[∂Ω], βi(x) > 0
and ∂Ω belongs to the C2, α. Moreover, it is assumed that for each i = 1, · · · , n,
Li is uniformly elliptic in Ω and a

(i)
jk , b

(i)
j , c(i) ∈ Cα[Ω̄], c(i)(x) ≥ 0, ϕi ∈ C1, α(Ω̄),

fi ∈ Cα(Ω̄×Rn) in Ω.
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2. Comparison Lemmas

We first give the following comparison result.

Lemma 1 Let W,V ∈ C2(Ω̄) be lower and upper solutions of (1)-(2), that is, W,V

satisfy

Liwi ≤ fi(x,Z) in Ω, Biwi ≤ ϕi(x) on ∂Ω, for Z ∈< W, V > [5] with zi = wi,

Livi ≥ fi(x,Z) inΩ, Bivi ≥ ϕi(x) on ∂Ω, for Z ∈< W, V > with zi = vi.

Suppose further that

|fi(x, Ũ)− fi(x, Ṽ )| ≤ Ki|Ũ − Ṽ |, Ũ , Ṽ ∈< W, V >,

where |Ũ − Ṽ | = |ũ1 − ṽ1|+ · · ·+ |ũn − ṽn|, c(i)(x) > Ki ≥ 0.
Then W ≤ V [5], namely, wi ≤ vi, i = 1, · · · , n, x ∈ Ω̄.

Proof Let Y (x) = W (x) − V (x), namely, yi(x) = wi(x) − vi(x), i = 1, · · · , n. If
yi(x) ≤ 0 is not true in Ω, then there exists an ε > 0 and x0 ∈ Ω̄ such that

wi(x0) = vi(x0) + ε, wi(x) ≤ vi(x) + ε, x ∈ Ω̄.

If x0 ∈ ∂Ω, then
∂wi(x0)

∂ν
≥ ∂vi(x0)

∂ν
and hence we can get

Bwi(x0) = αi(x0)
∂wi(x0)

∂ν
+ βi(x0)wi(x0)

≥ αi(x0)
∂vi(x0)

∂ν
+ βi(x0)[vi(x0) + ε] > Bvi(x0),

which is a contradiction.

If x0 ∈ Ω, then
∂wi(x0)

∂xj
=

∂vi(x0)
∂xj

,
N∑

j,k=1

(
∂2wi(x0)
∂xj∂xk

− ∂2vi(x0)
∂xj∂xk

)
λjλk ≤ 0, where

λj , λk are positive constants. Then by using the assumptions it follows that

fi(x0,W (x0)) ≥ Liwi(x0) ≥ Li [vi(x0) + ε] ≥ fi(x0, V (x0)) + c(i)(x0)ε

≥ fi(x0,W (x0)) +
[
c(i)(x0)−Ki

]
ε,

which contracts with c(i)(x) > Ki. Hence the claim is true and the proof is complete.
Evidently one has the following corollary to Lemma 1.

Corollary 2 For any P = (p1, · · · , pn) with pi ∈ C2(Ω) satisfying

L
(c0)
i pi ≡ −

N∑
j,k=1

a
(i)
jk (x)

∂2pi

∂xj∂xk
+

N∑
j=1

b
(i)
j (x)

∂pi

∂xj
+ c

(i)
0 pi ≤ 0, x ∈ Ω,

Bipi ≤ 0, x ∈ ∂Ω,

(3)

where c
(i)
0 (x) > 0. Then one has pi(x) ≤ 0 in Ω̄.


