BMO SPACES AND JOHN-NIRENBERG ESTIMATES FOR THE HEISENBERG GROUP TARGETS

Jia Gao
(School of Science, Nanjing University of Science and Technology, Nanjing 210094;
Department of Mathematics, Bengbu Tank Institute, Bengbu 233013, China)
(E-mail: gaojia79@sina.com.cn)
Zhao Peibiao and Yang Xiaoping
(School of Science, Nanjing University of Science and Technology, Nanjing 210094; China)
(Received Apr. 26, 2002; revised Mar. 12, 2003)

Abstract

In this paper, the BMO spaces for the Heisenberg group targets are studied. Some properties of the BMO spaces and the John-Nirenberg estimates are obtained.

Key Words Heisenberg group; BMO spaces; John-Nirenberg estimates.
2000 MR Subject Classification 43A80, 34K11.
Chinese Library Classification O152.4, O175.2.

1. Introduction

Let H^{m} denote Heisenberg group which is a Lie group that has algebra $\mathbf{g}=\mathbf{R}^{2 m+1}$ with a nonabelian group law:

$$
\begin{equation*}
\left(x_{u}, y_{u}, t_{u}\right) \cdot\left(x_{v}, y_{v}, t_{v}\right)=\left(x_{u}+x_{v}, y_{u}+y_{v}, t_{u}+t_{v}+2\left(x_{u} y_{v}-x_{v} y_{u}\right)\right) \tag{1}
\end{equation*}
$$

for every $u=\left(x_{u}, y_{u}, t_{u}\right), v=\left(x_{v}, y_{v}, t_{v}\right) \in H^{m}$, where $x_{u}, y_{u}, x_{v}, y_{v} \in R^{m}, t_{u}, t_{v} \in R^{1}$. The Lie algebra is generated by the left invariant vector fields:

$$
X_{i}=\frac{\partial}{\partial x_{i}}+2 y_{i} \frac{\partial}{\partial t}, \quad Y_{i}=\frac{\partial}{\partial y_{i}}-2 x_{i} \frac{\partial}{\partial t}, \quad i=1,2, \cdots, m, \quad T=\frac{\partial}{\partial t}
$$

For every $u=\left(x_{u}, y_{u}, t_{u}\right), v=\left(x_{v}, y_{v}, t_{v}\right) \in H^{m}$, the metric $d(u, v)$ in Heisenberg group H^{m} is defined as ([1])

$$
\begin{equation*}
d(u, v)=\left|u v^{-1}\right|_{H^{m}}=\left[\left(\left(x_{u}-x_{v}\right)^{2}+\left(y_{u}-y_{v}\right)^{2}\right)^{2}+\left(t_{u}-t_{v}+2\left(x_{v} y_{u}-x_{u} y_{v}\right)^{2}\right]^{1 / 4}\right. \tag{2}
\end{equation*}
$$

Let $\Omega \subset R^{n}(n \geq 2)$ be a bounded connected domain, α be a real number with $2<\alpha<\infty$. In [2], L. Capogna and Fang-hua Lin introduced the characterizations of the Sobolev space $W^{1, \alpha}\left(\Omega, H^{m}\right)$. In this paper, we will study some properties of $B M O\left(\Omega, H^{m}\right)$ and give a John-Nirenberg inequality about the maps in $B M O\left(\Omega, H^{m}\right)$. The results are signification in further discussing the properties of $W^{1, \alpha}\left(\Omega, H^{m}\right)$ for $\alpha=2$.

2. Preliminaries

Now we introduce some known results which are used in studying the properties of $B M O\left(\Omega, H^{m}\right)$.

Lemma $2.1\left(C_{p}\right.$-inequality) If $a_{1}, a_{2}, \cdots, a_{n}$ are nonnegative real numbers, then

$$
\left(\sum_{i=1}^{n} a_{i}\right)^{p} \leq C_{p} \sum_{i=1}^{n} a_{i}^{p}
$$

where $C_{p}=1$, if $0<p<1$ and $C_{p}=n^{p-1}$, if $p \geq 1$.
Lemma $2.2([3])$ For $u, v, w \in H^{m}$, we then have

$$
\begin{equation*}
d(u, v) \leq d(u, w)+d(v, w) \tag{3}
\end{equation*}
$$

Lemma 2.3 (Vitali type covering Lemma) Let μ be a Lebesgue measure on R^{n} and G be a family of closed balls with $\sup \{\operatorname{dim} B \mid B \in G\}<\infty$ that covers a set $A \subset R^{n}$, where $\mu(A)<\infty$. Then there is a countable disjoint subfamily G^{*} of G such that

$$
A \subseteq \bigcup_{B^{*} \in G^{*}} B^{*}, \quad \mu\left(A-\left\{\cup B^{*} \mid B^{*} \in G^{*}\right\}\right)=0
$$

and for any $B \in G$, there is $B_{k} \in G^{*}$ such that $B \cap B_{k} \neq \phi$, and $B \subset B_{k}^{*}$, where B_{k}^{*} denotes the ball which is concentric with B_{k} and its radius is 5-times that of B_{k}.

Lemma 2.4 (Calderon-Zygmund type decomposition) Let $B \subset R^{n}$ be a closed ball. Suppose $f: B \rightarrow[0, \infty)$ and $S>0$ such that $f_{B} f(x) d x \leq S$. Then there exists a sequence of mutually disjoint balls $B_{1}, B_{2}, \cdots, B_{i} \subset \Omega, i=1,2, \cdots$ such that that following conditions hold:
(i) $f(x) \leq S$, a.e. $x \in B \backslash \cup_{i} B_{i}^{*}$,
(ii) $S<f_{B_{i}} f(x) d x \leq 2^{n} S, i=1,2, \cdots$.

Where $f_{B} f(x) d x=\frac{1}{|B|} \int_{B} f(x) d x$ and $|B|=\mu(B)$ denotes the Lebesgue measure of B in R^{n}.

The proofs of Lemma 2.3 and Lemma 2.4 are found in [4].
Lemma 2.5 ([5]) $\quad B M O\left(R^{n}, R^{1}\right)$ is complete.

3. $B M O\left(\Omega, H^{m}\right)$ and John-Nirenberg's Estimations

Definition 3.1 Let $\Omega \subset R^{n}(n \geq 2)$ be a bounded connected domain and $1<$ $\alpha<\infty$. If $u(q): \Omega \rightarrow H^{m}$ satisfies $\int_{\Omega} d\left(u(q), u\left(q_{0}\right)\right)^{\alpha} d q=L<\infty$, then we say $u \in L^{\alpha}\left(\Omega, H^{m}\right) ;$ if

$$
\underset{p \in \Omega}{\operatorname{ess} \sup d\left(u(q), u\left(q_{0}\right)\right)=L<\infty, ~}
$$

