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Abstract The elliptic differential equations of second order
n∑

i,j=1

Di[Aij(x, y)Djy] + P (x, y) + Q(x, y,∇y) = e(x), x ∈ Ω.

will be considered in an exterior domain Ω ⊂ Rn, n ≥ 2. Some oscillation criteria are
given by integral averaging technique.
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1. Introduction

The oscillation of the solutions of second order elliptic differential equations has
been intensively studied in recent years by many authors [see, for example, [1-10] and
the references cited therein]. However, as far as we know, there are few results concern-
ing nonlinear elliptic differential equations of second order by using integral averaging
technique. Motivated by this fact, we intend here to study the oscillatory behavior of
solutions of nonlinear elliptic differential equations of second order

n∑
i,j=1

Di [Aij(x, y)Djy] + P (x, y) + Q(x, y,∇y) = e(x), x ∈ Ω, (E)

where Ω is an exterior domain in Rn and functions Ai,j , P , Q, e are to be specified in the
following text. Using integral averaging and completing square technique ( see, [11-13]
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) which has here been developed further, we give sufficient conditions for any proper
solution y(x) of Eq.(E) either to satisfy lim inf |x|→∞ |y(x)| = 0 or to be oscillatory. The
obtained theorems here extend and improve the main results [4] and [7-10]. Moreover,
some examples are given to illustrate the advantages of the obtained results.

As usual, R+ = (0,∞), R− = (−∞, 0). x = (x1, x2, · · · , xn) ∈ Rn, |x| = [
∑n

i=1 xi
2]

1
2 ,

and differentiation with respect to xi are denoted by Di, (i = 1, 2 · · · , n). ∇ =
(D1, D2, · · · , Dn). Sa = {x ∈ Rn : |x| = a}, Ga = {x ∈ Rn : |x| > a}, (a > 0). The
measure on Sa and S1 will be denoted by S and ω, respectively. Thus dS = an−1dω. The
outward unit normal ν to Sa at x ∈ Sa has components νi(x) = xi/|x|, (i = 1, 2, · · · , n).

Throughout this paper, Eq.(E) is to be considered in an exterior domain Ω ⊂ Rn

(ie. Gt0 ⊂ Ω for some positive number t0) subject to the following assumptions.
(A1) A = (Aij)n×n is a real symmetric positive definite function matrix (ellip-

ticity condition) with Ai,j ∈ C1+µ
loc (Ω × R,R+), µ ∈ (0, 1), (i, j = 1, 2, · · · , n), and let

λmax(x, y) denote the largest (necessary positive) eigenvalue of the matrix A. Assume
that there exists a function λ ∈ C[R+ ×R,R+] such that

λ(r, y) = max
|x|=r

λmax(x, y), (r > 0);

(A2) P ∈ Cµ
loc(Ω×R,R), Q ∈ Cµ

loc(Ω×R×Rn, R), µ ∈ (0, 1) such that for y 6= 0

yP (x, y) ≥ yp(x)f1(y), yQ(x, y,∇y) ≥ q(x)yf2(y)g(∇y),

where p ∈ C(Ω, R), q ∈ C(Ω, R −R−), f1 ∈ C ′(R,R), f2 ∈ C(R,R) and g ∈ C(Rn, R)
such that

(i) xf1(x) > 0, xf2(x) ≥ 0 and f2(x)/f1(x) ≥ k ≥ 0 for x 6= 0;
(ii) g(∇y) ≥ C for some C > 0;
(A3) e ∈ Cµ

loc(Ω), µ ∈ (0, 1).
Definition 1 For Ω ⊂ Rn and µ ∈ (0, 1), a function y(x) ∈ C2+µ

loc (Ω) which
satisfies Eq.(E) for all x ∈ Ω is called a solution of Eq.(E) in Ω.

We often assume that the solution of Eq.(E) exists in an exterior domain Ω under
the above assumption (see [14]).

Definition 2 A proper solution y(x) of Eq.(E) is called oscillatory in Ω whenever
the set {x ∈ Ω : y(x) = 0} is unbounded. Eq.(E) is called oscillatory in Ω whenever
every proper solution of Eq.(E) is oscillatory in Ω.

Following Philos [13], let us introduce now the class of functions < which will be
extensively used in the sequel.

Definition 3 Let D0 = {(t, s) : t > s ≥ t0} and D = {(t, s) : t ≥ s ≥ t0}. We say
that a function H ∈ C(D,R) belongs to a function class < (or H ∈ <, for short ) if

(i) H(t, t) = 0 for t ≥ t0; H(t, s) > 0 for (t, s) ∈ D0;
(ii) H has a continuous and nonpositive partial derivative on D0 with respect to

the second variables, and there exists a function h ∈ C[D,R] such that

−∂H

∂s
(t, s) = h(t, s)

√
H(t, s) for all (t, s) ∈ D0.


