THE BLOW UP LOCUS OF NONLINEAR ELLIPTIC EQUATIONS WITH SUPERCRITICAL EXPONENTS

Hou Songbo (Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080; Graduate School of the Chinese Academy of Sciences, Beijing 100039, China) (E-mail: housb@mail.amss.ac.cn) (Received Jan. 19, 2004; revised May 2, 2004)

Abstract We consider the compactness theorem for the positive solutions of the equation

$$\Delta u + h_1 u^{\alpha} + h_2 u^{\beta} = 0 \text{ in } \Omega \subset \mathbf{R}^n$$

and obtain the measure estimate of the blow up set for positive smooth solutions $\{u_i\}$ of the above equation with $\{||u_i||_{H^1(\Omega)} + ||u_i||_{L^{\alpha+1}(\Omega)} + ||u_i||_{L^{\beta+1}(\Omega)}\}$ bounded.

Key Words Blow up locus; Hausdorff dimension; monotonicity inequality.
2000 MR Subject Classification 35B45, 35J20.
Chinese Library Classification 0175.25.

1. Introduction

Let Ω be an open subset of \mathbf{R}^n $(n \geq 3)$. We consider the blow up locus of the solutions to the equation

$$\Delta u + h_1 u^{\alpha} + h_2 u^{\beta} = 0 \text{ in } \Omega \tag{1.1}$$

where $\alpha \geq \frac{n+2}{n-2}$, $\alpha + 1 \geq 2\beta > 2$, $h_i \in C^1(\Omega)$ (i = 1, 2); $a_i \leq h_i(x) \leq b_i$; $0 < a_i < b_i$ and $|\nabla \log h_i(x)| \leq C$ for $x \in \overline{\Omega}$ and i = 1, 2. Guo-Li [1] studied the equation in the case that $\beta = 1$.

We say that u is a positive weak solution of (1.1) in Ω if $u \ge 0$ a.e. and if, for all $\phi \in C^{\infty}(\Omega)$ with compact support in Ω ,

$$-\int_{\Omega} u\Delta\phi dx = \int_{\Omega} [h_1(x)u^{\alpha} + h_2 u^{\beta}]\phi(x)dx.$$
(1.2)

We say that such a weak solution u is stationary if, in addition, it satisfies

$$\int_{\Omega} \left[\frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_j} \frac{\partial \phi^j}{\partial x_i} - \frac{1}{2} |\nabla u|^2 \frac{\partial \phi^i}{\partial x_i} + \frac{1}{\alpha+1} u^{\alpha+1} \frac{\partial h_1}{\partial x_i} \phi^i + \frac{1}{\alpha+1} h_1 u^{\alpha+1} \frac{\partial \phi^i}{\partial x_i} \right]$$

$$+\frac{1}{\beta+1}u^{\beta+1}\frac{\partial h_2}{\partial x_i}\phi^i + \frac{1}{\beta+1}h_2u^{\beta+1}\frac{\partial \phi^i}{\partial x_i}\right]dx = 0$$
(1.3)

for all regular vector field ϕ with compact support in Ω (summation over i and j is understood).

For the weak solutions in $H^1(\Omega) \cap L^{\alpha+1}(\Omega) \cap L^{\beta+1}(\Omega)$, this identity is obtained by assuming that the functional E(u) is stationary with respect to domain variations, that is

$$\frac{d}{dt}E(u_t)|_{t=0} = 0$$

where

$$E(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx - \frac{1}{\alpha + 1} \int_{\Omega} h_1 u^{\alpha + 1} dx - \frac{1}{\beta + 1} \int_{\Omega} h_2 u^{\beta + 1} dx$$

and $u_t(x) = u(x + t\phi(x))$. It is clear that a smooth solution is stationary.

Let $u \in H^1(\Omega) \cap L^{\alpha+1}(\Omega) \cap L^{\beta+1}(\Omega)$ be a positive solution of (1.1). We denote by Σ the set of points $x \in \Omega$ such that u is not bounded in any neighborhood V of x in Ω . If u is bounded in some neighborhood of x, then the classical regularity theory ensures that u is regular in some neighborhood of x. Therefore Σ is the singular set of u. In the paper [2], Pacard showed that the Hausdorff dimension of the singular set of a weak positive stationary solution u of the equation $-\Delta u = u^{\alpha}$ in Ω is less than $n - 2\frac{\alpha+1}{\alpha-1}$ if $\frac{n+2}{n-2} \le \alpha \le \frac{n+1}{n-3}$. Guo-Li [1] showed that the Hausdorff dimension of the blow up set of the equation $\Delta u + h_1 u + h_2 u^{\alpha} = 0$ is less than $n - 2 \frac{\alpha + 1}{\alpha - 1}$, where $\alpha \ge \frac{n+2}{n-2}, h_i \in C^1(\Omega) (i=1,2); a_i \le h_i(x) \le b_i; 0 < a_i < b_i \text{ and } | \nabla \log h_i(x) | \le C$ for $x \in \overline{\Omega}$ and i = 1, 2.

In this paper, we consider the compactness theorem for the positive solutions of the equation (1.1). We shall first establish a monotonicity inequality for the positive stationary weak solutions $u \in H^1(\Omega) \cap L^{\alpha+1}(\Omega) \cap L^{\beta+1}(\Omega)$ by the similar idea in [2]. Then using such monotonicity property of energy and the idea of Schoen [3], we obtain the measure estimate of the blow up set for positive smooth solutions $\{u_i\}$ of (1.1) with $\begin{cases} ||u_i||_{H^1(\Omega)} + ||u_i||_{L^{\alpha+1}(\Omega)} + ||u_i||_{L^{\beta+1}(\Omega)} \end{cases} \text{ bounded.} \\ \text{More precisely, we prove the following theorem} \end{cases}$

Theorem 1.1 Let $\alpha \ge \frac{n+2}{n-2}$, $\alpha + 1 \ge 2\beta > 2$. Let $\{u_i\}$ be a sequence of positive smooth solutions of (1.1) with $\left\{ ||u_i||_{H^1(\Omega)} + ||u_i||_{L^{\alpha+1}(\Omega)} + ||u_i||_{L^{\beta+1}(\Omega)} \right\}$ bounded. Let u be the weak limit of $\{u_i\}$ in $H^1(\Omega) \cap L^{\alpha+1}(\Omega) \cap L^{\beta+1}(\Omega)$. Then there is a subsequence of $\{u_i\}$ which converges uniformly in C^k norm to u away a closed set Σ of locally finite μ - dimensional Hausdorff measure, where $\mu = n - 2 \frac{\alpha + 1}{\alpha - 1}$. Moreover, Σ is a rectifiable set.