
INTERNATIONAL JOURNAL OF c© 2014 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 11, Number 3, Pages 496–524

TWO-GRID hp-VERSION DISCONTINUOUS GALERKIN FINITE

ELEMENT METHODS FOR QUASI-NEWTONIAN FLUID FLOWS

SCOTT CONGREVE AND PAUL HOUSTON

Abstract. In this article we consider the a priori and a posteriori error analysis of two-grid
hp-version discontinuous Galerkin finite element methods for the numerical solution of a strongly
monotone quasi-Newtonian fluid flow problem. The basis of the two-grid method is to first solve
the underlying nonlinear problem on a coarse finite element space; a fine grid solution is then
computed based on undertaking a suitable linearization of the discrete problem. Here, we study
two alternative linearization techniques: the first approach involves evaluating the nonlinear vis-
cosity coefficient using the coarse grid solution, while the second method utilizes an incomplete
Newton iteration technique. Energy norm error bounds are deduced for both approaches. More-
over, we design an hp-adaptive refinement strategy in order to automatically design the underlying
coarse and fine finite element spaces. Numerical experiments are presented which demonstrate
the practical performance of both two–grid discontinuous Galerkin methods.
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1. Introduction

The purpose of this article is to develop the a priori and a posteriori error analy-
sis of two-grid hp-version discontinuous Galerkin finite element methods (DGFEM-
s) for the numerical approximation of strongly monotone quasi-Newtonian fluid
flow problems. The general philosophy of two-grid methods is to first approximate
the underlying nonlinear problem on a coarse finite element partition of the com-
putational domain. On the basis of this coarse grid approximation, a linearized
variant of the discrete problem is then computed on a fine mesh; see, for example,
[4, 8, 9, 16, 23, 27, 30, 31, 32, 33], and the references cited therein. The linearization
required for the construction of the linear problem to be solved on the fine mesh
may be undertaken in a number of different ways. Indeed, a simple approach is to
evaluate the nonlinear coefficients arising in the underlying partial differential equa-
tion using the coarse grid approximation; in this way, the fine grid approximation
essentially includes an underlying modelling or data approximation error stemming
from fixing the data of the problem, cf. [9, 33], for example. On the other hand,
the coarse grid solution may be used as the initial guess for a Newton solver on the
fine mesh; in this setting, one step of the Newton iteration technique is typically
undertaken, cf. [4, 33]. In the context of DGFEMs, Bi & Ginting [9] studied the
first approach for a class of quasilinear elliptic PDEs, where the nonlinear diffusion
coefficient µ depends on the analytical solution u; this analysis was then extended
to consider the case when µ = µ(|∇u|) in [15]. The analysis of DGFEMs using the
two-grid technique based on employing a single step of a Newton solver for this
latter class of scalar PDEs has been studied in [12].

In this article we generalize the analysis presented in [12, 14, 15] for two-grid hp-
version interior penalty (IP) DGFEM approximations of scalar quasilinear elliptic
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PDEs to the following non-Newtonian fluid flow problem:

−∇ · {µ (x, |e (u) |) e (u)}+∇p = f in Ω,(1)

∇ · u = 0 in Ω,(2)

u = 0 on Γ.(3)

Here, Ω ⊂ R
d, d = 2, 3, is a bounded polygonal, or polyhedral, Lipschitz domain

with boundary Γ = ∂Ω, f ∈ L2(Ω)d is a given source term, u = (u1, . . . , ud)
⊤ is

the velocity vector, p is the pressure, and e(u) is the symmetric d× d strain tensor
defined by

eij(u) =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
, i, j = 1 . . . d.

Furthermore, |e(u)| is the Frobenius norm of e(u). For the purposes of this article
we assume that the function µ satisfies the following structural hypothesis.

Assumption 1. We assume that the nonlinearity µ ∈ C(Ω̄× [0,∞)) and there exists
positive constants mµ and Mµ such that

(4) mµ(t− s) ≤ µ(x, t)t− µ(x, s)s ≤ Mµ(t− s), t ≥ s ≥ 0, x ∈ Ω̄.

As a direct consequence of (4), we note that µ satisfies the following inequalities:
there exists positive constants C1 and C2, such that for all τ , ω ∈ R

d×d and all
x ∈ Ω̄,

|µ(x, |τ |)τ − µ(x, |ω|)ω| ≤ C1|τ − ω|,(5)

C2|τ − ω|
2
≤ (µ(x, |τ |)τ − µ(x, |ω|)ω) : (τ − ω).(6)

For ease of notation we suppress the dependence of µ on x and write µ(t) instead
of µ(x, t). Throughout this paper, we use the following standard notation. Given
D ⊂ R

d, d ≥ 1, a bounded Lipschitz domain, we write Ht(D) to denote the usual
Sobolev space of real-valued functions of order t ≥ 0 with norm ‖·‖Ht(D); for t = 0,

we set L2(D) = H0(D). We write H1
0 (D) to denote the subspace of functions in

H1(D) with zero trace on ∂D, and set L2
0(D) = {q ∈ L2(D) :

∫
D
q dx = 0}.

This article is organized as follows. In Section 2 we formulate the standard (single
grid) IP DGFEM for the numerical approximation of the boundary-value problem
(1)–(3). Sections 3 and 4 develop the a priori and a posteriori error analysis of
the above mentioned variants of the two–grid hp-version IP DGFEM. On the basis
of the a posteriori error bounds established in this article, in Section 5 we consid-
er the design of an hp-adaptive finite element algorithm capable of automatically
enriching the underlying coarse and fine finite element spaces; the performance of
this adaptive strategy is studied in Section 6. Finally, in Section 7 we summarise
the main results of this article and draw some conclusions.

2. hp-Version IP DGFEM approximation

In order to construct the two-grid IP DGFEMs considered in this article, we
first recall the family of IP DGFEMs introduced and analysed in [13]. To this end,
we introduce the following notation. Let Th denote a shape-regular quadrilater-
al/hexahedral partition of the computational domain Ω into disjoint open-element
domains κ such that Ω =

⋃
κ∈Th

κ. We assume that each κ ∈ Th is an affine image
of a fixed master element κ̂; i.e., for each κ ∈ Th, there exists an affine mapping
Tκ : κ̂ → κ such that κ = Tκ(κ̂), where κ̂ = (−1, 1)d is the reference element.
We write hκ to denote the element diameter of κ ∈ Th, and set h = maxκ∈Th

hκ;
furthermore, nκ signifies the unit outward normal vector to κ. We allow the meshes
Th to be one-irregular and assume that the family of meshes {Th}h>0 is of ‘bounded


