THE AREA INTEGRAL ON NEGATIVE CURVATURE SPACE FORM

Wang Meng
(Institute of Mathematics, Fudan University, Shanghai 200433, China)
(E-mail: mathdreamcn@yahoo.com.cn) Zhao Yi
(College of Science, Hangzhou Dianzi University, Hangzhou 310012, China)
(E-mail: yizhzo@126.com)
(Received Jun. 13, 2003)

Abstract

In this note, we show that the area integral of positive harmonic functions on a constant negative curvature space form is almost everywhere finite with respect to a harmonic measure on $S(\infty)$.

Key Words harmonic function; area integral; negative curvature.
2000 MR Subject Classification 32Q05, 42B20.
Chinese Library Classification $0189.3^{+} 3$, O175.5.

1. Introduction

In the study of harmonic functions in \mathbb{R}_{+}^{n+1}, the area integral [1]

$$
S(u)\left(x^{0}\right)=\left(\iint_{\Gamma_{\alpha}^{h}\left(x^{0}\right)}\left|\nabla_{0} u\right|^{2} y^{1-n} \mathrm{~d} y \mathrm{~d} x\right)^{1 / 2}
$$

plays an essential role, where

$$
\left|\nabla_{0} u\right|^{2}=\left|\frac{\partial u}{\partial y}\right|^{2}+\sum_{j=1}^{n}\left|\frac{\partial u}{\partial x_{j}}\right|^{2}
$$

$\nabla_{0} u$ is the gradient with respect to the Euclidean metric, and

$$
\Gamma_{\alpha}^{h}\left(x^{0}\right)=\left\{(x, y) \in \mathbb{R}_{+}^{n+1}:\left|x-x^{0}\right|<\alpha y, 0<y<h\right\} \quad x^{0} \in \mathbb{R}^{n}
$$

is a nontangential cone.
If we use Poincaré metric

$$
\mathrm{d} s_{-1}^{2}=\frac{\mathrm{d} y^{2}+\sum_{i=1}^{n} \mathrm{~d} x_{i}^{2}}{y^{2}}, \quad(y>0)
$$

in \mathbb{R}_{+}^{n+1}, the volume element is $\mathrm{d} V_{-1}=y^{-n-1} \mathrm{~d} x^{1} \cdots \mathrm{~d} x^{n} \mathrm{~d} y$, and $\left|\nabla_{-1} u\right|^{2}=y^{2}\left|\nabla_{0} u\right|^{2}$, where ∇_{-1} is the gradient with respect to the Poincaré metric. So, one gets

$$
\left|\nabla_{-1} u\right|^{2} \mathrm{~d} V_{-1}=\left|\nabla_{0} u\right|^{2} y^{1-n} \mathrm{~d} y \mathrm{~d} x
$$

In $\left(\mathbb{R}_{+}^{n+1}, \mathrm{~d} s_{-1}^{2}\right), \gamma=\left\{(x, y): \quad x=x^{0}\right\}$ is a geodesic, so $\left|x-x^{0}\right|<\alpha y$ is equivalent to $d_{-1}((x, y), \gamma)<\alpha$. Therefore

$$
\Gamma_{\alpha}\left(x^{0}\right)=\left\{(x, y) \in \mathbb{R}_{+}^{n+1}: d_{-1}((x, y), \gamma)<\alpha\right\},
$$

and

$$
S(u)\left(x^{0}\right)=\left(\int_{\Gamma_{\alpha}\left(x^{0}\right)}\left|\nabla_{-1} u\right|^{2} \mathrm{~d} V_{-1}\right)^{1 / 2}
$$

Consequently we get a clear expression and explanation of the area integral by using Poincaré metric on \mathbb{R}_{+}^{n+1}.

A basic fact says, if u is a harmonic function in \mathbb{R}_{+}^{n+1} with respect to the Euclidean metric, then $S(u)(x)$ is finite for almost all $x \in \mathbb{R}^{n}$. It is certainly interesting to see whether it is finite almost everywhere if u is a harmonic function with respect to the Poincaré metric. If $n=2$, it is certainly right because harmonic functions are conformal invariant. In this paper we will show it is in true for $n>2$.

In fact, we can define the area integral on any simply connected complete manifold M with non-positive sectional curvature. Recall that Aderson-Schoen [2] defined the non-tangential cone in M.

Definition A Let $\gamma: \mathbb{R}^{+} \rightarrow M$ be a geodesic ray in M asymptotic to $Q \in S(\infty)$ with $\gamma(0)=O$. Then a nontangential cone T_{d} at Q is a domain of the form

$$
T_{d}=T_{d}^{o}(Q)=\{x \in M: \rho(x, \gamma)<d\} .
$$

We define the area integral on M as follows.
Definition 1 If u is a smooth function defined on M, and $\xi \in S(\infty)$, then the area integral of u at ξ is defined by

$$
\begin{equation*}
S(u)(\xi)=\int_{T_{d}^{o}(\xi)}|\nabla u|^{2} \mathrm{~d} V \tag{1}
\end{equation*}
$$

In this paper, we mainly show that
Theorem Let M be a simply connected, complete, n-dimentional Riemannian manifold with negative constant sectional curvature $K_{M}=-k^{2}, k>0$. If u is a positive harmonic function on M, then $S(u)(\xi)<+\infty$ for almost all $\xi \in S(\infty)$ with respect to a harmonic measure on $S(\infty)$.

We conjecture that the above result holds for any manifold with nonpositively sectional curvature.

