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Abstract Global-in-time classical solutions near Maxwellians with small ampli-
tude are constructed for the Vlasov-Poisson system with certain generalized Landau
collision operator. The construction of global solution is based on an energy method.
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1. Introduction

We consider the following system ([1])

∂tF + v · ∇xF +∇xφ · ∇vF = Q[F, F ],

4φ = ρ− ρ0 =
∫

R3
Fdv − ρ0,

∫
T 3
φdx = 0,

F (0, x, v) = F0(x, v), (1.1)

where F (t, x, v) is the spatially periodic distribution function for the particles at time
t ≥ 0, with spatial coordinates x = (x1, x2, x3) ∈ [−π, π]3 = T 3 and velocity v =
(v1, v2, v3) ∈ R3. The collision between particles is given by Landau operator,

Q[F,G] = ∇v ·
{∫

R3
φ(v − v′)[F (v′)∇vG(v)−G(v)∇vF (v′)]dv′

}
= ∂i

∫
R3
φij(v − v′)[F (v′)∂jG(v)−G(v)∂jF (v′)]dv′.

where φij = {δij − vivj/|v|2}|v|γ+2. We are only concerned with γ ≥ −1.
We study the classical solutions for (1.1) near a global Maxwellian µ = e−|v|

2
and

ρ0 =
∫

R3
e−|v|

2
dv. We define the standard perturbation f(t, x, v) to µ as F = µ+µ1/2f .

It is well known that Q[µ, µ] = 0. By expanding Q[µ+ µ1/2g1, µ+ µ1/2g2], we define

Q
[
µ+ µ1/2g1, µ+ µ1/2g2

]
≡ Q[µ, µ] + µ1/2 {Kg1 +Ag2 + Γ[g1, g2]} .
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The system (1.1) for f(t, x, v) turns into

[∂t + v · ∇x +∇xφ · ∇v]f − 2∇xφ · vµ1/2 + Lf = ∇xφ · vf + Γ[f, f ],

4φ =
∫

R3
fµ1/2dv,

∫
T 3
φdx = 0, f(0, x, v) = f0(x, v), (1.2)

where L = −A − K. Notice that A, K and Γ are defined in the same way as in [2],
namely, σij = φij ∗ µ,

Ag = µ−1/2∂i

{
µ1/2σij [∂jg + vjg]

}
,

Kg = −µ−1/2∂i

{
µ

[
φij ∗ {µ1/2[∂jg + vjg]}

]}
,

Γ[g1, g2] = ∂i

[{
φij ∗ [µ1/2g1]

}
∂jg2

]
−

{
φij ∗ [viµ

1/2g1]
}
∂jg2

− ∂i

[{
φij ∗ [µ1/2∂jg1]

}
g2

]
+

{
φij ∗ [viµ

1/2∂jg1]
}
g2.

Obviously, the conservation of mass, momentum, and energy of (1.1) holds

d

dt

∫ ∫
F (t) =

d

dt

∫ ∫
viF (t) =

d

dt

{ ∫ ∫
|v|2F (t) +

∫
|∇xφ(t)|2

}
= 0.

By assuming that initially F0(x, v) has the same mass, momentum and energy as
Maxwellian µ, we can rewrite the conservation law as∫ ∫

f(t)µ1/2 =
∫ ∫

vif(t)µ1/2 =
{ ∫ ∫

|v|2f(t)µ1/2 +
∫
|∇xφ(t)|2

}
= 0.

We introduce a weight function of v as ω = ω(v) = [1 + |v|]γ+2. We denote the

weighted L2 norm as |g|22,θ =
∫

R3
ω2θg2dv, ‖g‖2

θ =
∫

R3×T 3
ω2θg2dxdv where ‖ ·‖0 = ‖ ·‖.

We define the weighted norm and the high order energy norm as

|g|2σ,θ =
∫

R3
ω2θ[σij∂ig∂jg + σijvivjg

2]dv,

‖g‖2
σ,θ =

∫
R3×T 3

ω2θ[σij∂ig∂jg + σijvivjg
2]dxdv,

E(f(t, x, v)) ≡
∑

|α|+|β|≤N

[
1
2
‖∂α

x ∂
β
v f(t)‖2 +

∫ t

0
‖∂α

x ∂
β
v f(s)‖2

σds],

E(f0) = E(f(0)) ≡
∑

|α|+|β|≤N

‖∂α
x ∂

β
v f0‖2,

where | · |σ,0 = | · |σ, ‖ · ‖σ,0 = ‖ · ‖σ and N ≥ 8.
In the following we give some lemmas without a proof which can be found in [2].

Lemma 1.1 Let |β| > 0, |α| + |β| ≤ N and θ ≥ 0. Then for small η > 0, there
exists C > 0 and Cη = Cη(θ) > 0 such that

− (ω2θ∂β
v [Ag], ∂β

v g) ≥ |∂β
v g|2σ,θ − η

∑
|β1|≤|β|

|∂β1
v g|2σ,θ − Cη|µg|22, (1.3)

|(ω2θ∂β
v [Kg1], ∂β

v g2)| ≤ {η
∑

|β1|≤|β|
|∂β1

v g1|σ,θ + Cη|µg1|2}|∂β
v g2|σ,θ, (1.4)


