GLOBAL SOLUTION OF THE VLASOV-POISSON-LANDAU SYSTEMS NEAR MAXWELLIANS WITH SMALL AMPLITUDE

Yu Hongjun
(Academy of Mathematics and System Sciences, CAS, Beijing 100080,China)
(E-mail: yuhj@mail.amss.ac.cn)
(Received Jun. 20, 2003)

Abstract

Global-in-time classical solutions near Maxwellians with small amplitude are constructed for the Vlasov-Poisson system with certain generalized Landau collision operator. The construction of global solution is based on an energy method.

Key Words Global-in-time classical solution; small amplitude; energy estimate. 2000 MR Subject Classification 35Q99, 35A05. Chinese Library Classification O175.24.

1. Introduction

We consider the following system ([1])

$$
\begin{align*}
& \partial_{t} F+v \cdot \nabla_{x} F+\nabla_{x} \phi \cdot \nabla_{v} F=Q[F, F] \\
& \triangle \phi=\rho-\rho_{0}=\int_{R^{3}} F d v-\rho_{0}, \quad \int_{T^{3}} \phi d x=0 \\
& F(0, x, v)=F_{0}(x, v) \tag{1.1}
\end{align*}
$$

where $F(t, x, v)$ is the spatially periodic distribution function for the particles at time $t \geq 0$, with spatial coordinates $x=\left(x_{1}, x_{2}, x_{3}\right) \in[-\pi, \pi]^{3}=T^{3}$ and velocity $v=$ $\left(v_{1}, v_{2}, v_{3}\right) \in R^{3}$. The collision between particles is given by Landau operator,

$$
\begin{aligned}
Q[F, G] & =\nabla_{v} \cdot\left\{\int_{R^{3}} \phi\left(v-v^{\prime}\right)\left[F\left(v^{\prime}\right) \nabla_{v} G(v)-G(v) \nabla_{v} F\left(v^{\prime}\right)\right] d v^{\prime}\right\} \\
& =\partial_{i} \int_{R^{3}} \phi^{i j}\left(v-v^{\prime}\right)\left[F\left(v^{\prime}\right) \partial_{j} G(v)-G(v) \partial_{j} F\left(v^{\prime}\right)\right] d v^{\prime}
\end{aligned}
$$

where $\phi^{i j}=\left\{\delta_{i j}-v_{i} v_{j} /|v|^{2}\right\}|v|^{\gamma+2}$. We are only concerned with $\gamma \geq-1$.
We study the classical solutions for (1.1) near a global Maxwellian $\mu=e^{-|v|^{2}}$ and $\rho_{0}=\int_{R^{3}} e^{-|v|^{2}} d v$. We define the standard perturbation $f(t, x, v)$ to μ as $F=\mu+\mu^{1 / 2} f$. It is well known that $Q[\mu, \mu]=0$. By expanding $Q\left[\mu+\mu^{1 / 2} g_{1}, \mu+\mu^{1 / 2} g_{2}\right]$, we define

$$
Q\left[\mu+\mu^{1 / 2} g_{1}, \mu+\mu^{1 / 2} g_{2}\right] \equiv Q[\mu, \mu]+\mu^{1 / 2}\left\{K g_{1}+A g_{2}+\Gamma\left[g_{1}, g_{2}\right]\right\}
$$

The system (1.1) for $f(t, x, v)$ turns into

$$
\begin{align*}
& {\left[\partial_{t}+v \cdot \nabla_{x}+\nabla_{x} \phi \cdot \nabla_{v}\right] f-2 \nabla_{x} \phi \cdot v \mu^{1 / 2}+L f=\nabla_{x} \phi \cdot v f+\Gamma[f, f]} \\
& \triangle \phi=\int_{R^{3}} f \mu^{1 / 2} d v, \quad \int_{T^{3}} \phi d x=0, \quad f(0, x, v)=f_{0}(x, v) \tag{1.2}
\end{align*}
$$

where $L=-A-K$. Notice that A, K and Γ are defined in the same way as in [2], namely, $\sigma^{i j}=\phi^{i j} * \mu$,

$$
\begin{aligned}
& A g=\mu^{-1 / 2} \partial_{i}\left\{\mu^{1 / 2} \sigma^{i j}\left[\partial_{j} g+v_{j} g\right]\right\} \\
& K g=-\mu^{-1 / 2} \partial_{i}\left\{\mu\left[\phi^{i j} *\left\{\mu^{1 / 2}\left[\partial_{j} g+v_{j} g\right]\right\}\right]\right\} \\
& \Gamma\left[g_{1}, g_{2}\right]=\partial_{i}\left[\left\{\phi^{i j} *\left[\mu^{1 / 2} g_{1}\right]\right\} \partial_{j} g_{2}\right]-\left\{\phi^{i j} *\left[v_{i} \mu^{1 / 2} g_{1}\right]\right\} \partial_{j} g_{2} \\
& \quad-\partial_{i}\left[\left\{\phi^{i j} *\left[\mu^{1 / 2} \partial_{j} g_{1}\right]\right\} g_{2}\right]+\left\{\phi^{i j} *\left[v_{i} \mu^{1 / 2} \partial_{j} g_{1}\right]\right\} g_{2}
\end{aligned}
$$

Obviously, the conservation of mass, momentum, and energy of (1.1) holds

$$
\frac{d}{d t} \iint F(t)=\frac{d}{d t} \iint v_{i} F(t)=\frac{d}{d t}\left\{\iint|v|^{2} F(t)+\int\left|\nabla_{x} \phi(t)\right|^{2}\right\}=0
$$

By assuming that initially $F_{0}(x, v)$ has the same mass, momentum and energy as Maxwellian μ, we can rewrite the conservation law as

$$
\iint f(t) \mu^{1 / 2}=\iint v_{i} f(t) \mu^{1 / 2}=\left\{\iint|v|^{2} f(t) \mu^{1 / 2}+\int\left|\nabla_{x} \phi(t)\right|^{2}\right\}=0
$$

We introduce a weight function of v as $\omega=\omega(v)=[1+|v|]^{\gamma+2}$. We denote the weighted L^{2} norm as $|g|_{2, \theta}^{2}=\int_{R^{3}} \omega^{2 \theta} g^{2} d v,\|g\|_{\theta}^{2}=\int_{R^{3} \times T^{3}} \omega^{2 \theta} g^{2} d x d v$ where $\|\cdot\|_{0}=\|\cdot\|$.

We define the weighted norm and the high order energy norm as

$$
\begin{aligned}
& |g|_{\sigma, \theta}^{2}=\int_{R^{3}} \omega^{2 \theta}\left[\sigma^{i j} \partial_{i} g \partial_{j} g+\sigma^{i j} v_{i} v_{j} g^{2}\right] d v \\
& \|g\|_{\sigma, \theta}^{2}=\int_{R^{3} \times T^{3}} \omega^{2 \theta}\left[\sigma^{i j} \partial_{i} g \partial_{j} g+\sigma^{i j} v_{i} v_{j} g^{2}\right] d x d v \\
& E(f(t, x, v)) \equiv \sum_{|\alpha|+|\beta| \leq N}\left[\frac{1}{2}\left\|\partial_{x}^{\alpha} \partial_{v}^{\beta} f(t)\right\|^{2}+\int_{0}^{t}\left\|\partial_{x}^{\alpha} \partial_{v}^{\beta} f(s)\right\|_{\sigma}^{2} d s\right] \\
& E\left(f_{0}\right)=E(f(0)) \equiv \sum_{|\alpha|+|\beta| \leq N}\left\|\partial_{x}^{\alpha} \partial_{v}^{\beta} f_{0}\right\|^{2}
\end{aligned}
$$

where $|\cdot|_{\sigma, 0}=|\cdot|_{\sigma},\|\cdot\|_{\sigma, 0}=\|\cdot\|_{\sigma}$ and $N \geq 8$.
In the following we give some lemmas without a proof which can be found in [2].
Lemma 1.1 Let $|\beta|>0,|\alpha|+|\beta| \leq N$ and $\theta \geq 0$. Then for small $\eta>0$, there exists $C>0$ and $C_{\eta}=C_{\eta}(\theta)>0$ such that

$$
\begin{align*}
& -\left(\omega^{2 \theta} \partial_{v}^{\beta}[A g], \partial_{v}^{\beta} g\right) \geq\left|\partial_{v}^{\beta} g\right|_{\sigma, \theta}^{2}-\eta \sum_{\left|\beta_{1}\right| \leq|\beta|}\left|\partial_{v}^{\beta_{1}} g\right|_{\sigma, \theta}^{2}-C_{\eta}|\mu g|_{2}^{2} \tag{1.3}\\
& \left|\left(\omega^{2 \theta} \partial_{v}^{\beta}\left[K g_{1}\right], \partial_{v}^{\beta} g_{2}\right)\right| \leq\left\{\eta \sum_{\left|\beta_{1}\right| \leq|\beta|}\left|\partial_{v}^{\beta_{1}} g_{1}\right|_{\sigma, \theta}+C_{\eta}\left|\mu g_{1}\right|_{2}\right\}\left|\partial_{v}^{\beta} g_{2}\right|_{\sigma, \theta} \tag{1.4}
\end{align*}
$$

