THE EXISTENCE AND THE NON-EXISTENCE OF GLOBAL SOLUTIONS OF A FREE BOUNDARY PROBLEM

Yin Rong
(Graduate Mailbox, Department of Mathematics, Suzhou University, Suzhou 215006, China.) (E-mail: yinrong1997@hotmail.com)
Yu Wanghui
(Department of Mathematics, Suzhou University, Suzhou 215006, China.)
(E-mail: whyu@suda.edu.cn)
(Received Nov. 11, 2003; revised Jan. 19, 2004)

Abstract

We study a free boundary problem of parabolic equations with a positive parameter τ included in the coefficient of the derivative with respect to the time variable t. This problem arises from some reaction-diffusion system. We prove that, if τ is large enough, the solution exists for $0<t<+\infty$; while, if τ is small enough, the solution exists only in finite time.

Key Words Free boundary problem; global solution; existence; non-existence. 2000 MR Subject Classification 35K57. Chinese Library Classification O175.26.

1. Introduction

In this paper we study the following free boundary problem of parabolic equations:

$$
\begin{array}{ll}
\frac{1}{\tau} v_{t}=v_{x x}-2 v+H(x-\phi(t)), & x \in(0,1), t>0 ; \\
v_{x}(0, t)=0=v_{x}(1, t), & t>0 ; \\
v(x, 0)=v_{0}(x), & x \in[0,1] ; \\
\frac{d \phi}{d t}=C(v(\phi(t), t)), & t>0 ; \\
0<\phi(t)<1, & t>0 ; \\
\phi(0)=\phi_{0} \in(0,1), & \tag{1.6}
\end{array}
$$

where τ is a positive constant, $H(s)$ is the Heaviside function, $x=\phi(t)$ is the free boundary, and

$$
\begin{equation*}
C(v)=\frac{2 v-\frac{1}{2}}{\sqrt{\left(\frac{3}{4}-v\right)\left(v+\frac{1}{4}\right)}} . \tag{1.7}
\end{equation*}
$$

(1.1)-(1.6) is derived from the reaction-diffusion system

$$
\left\{\begin{array}{l}
\epsilon u_{t}=\epsilon^{2} u_{x x}+f(u, v) \tag{1.8}\\
\frac{1}{\tau} v_{t}=v_{x x}+g(u, v)
\end{array}\right.
$$

where $f(u, v)=H\left(u-\frac{1}{4}\right)-u-v$ and $g(u, v)=u-v$. As $\epsilon \rightarrow 0$, the function $u(x)$ tends to 0 or 1 almost everywhere, and the layer between the regions $\{x \mid u(x)<1 / 4\}$ and $\{x \mid u(x)>1 / 4\}$ tends to an interface $x=\phi(t)$ which moves with the speed $C(v(t))$. The parameter τ in (1.8) is important because it represents the ratio of the dynamics of the interface and the bulk region. (For the backgrounds and derivations of (1.8) and (1.1)-(1.7), see $[1,2])$.
D. Hilhorst, Y. Nishiura and M.Mimura [3] investigate the well-posedness of (1.1)(1.6). They prove by a fixed-point argument that, if $v_{0} \in L^{2}(0,1)$ and $-M \leq v_{0}(x) \leq M$ in $[0,1]$ for some suitable constant $M>0$, then (1.1)-(1.6) has a unique weak solution $(v, \phi) \in L^{2}\left(0, T^{*} ; H^{1}(0,1)\right) \times C^{0,1}\left(\left[0, T^{*}\right]\right)$ in the sense of distribution with $T^{*}>0$ such that

$$
\begin{equation*}
T^{*}=+\infty, \quad \text { or, } \quad \lim _{t \rightarrow T^{*}-0} \phi(t)=0 \text { or } 1 \tag{1.9}
\end{equation*}
$$

In the special case $v_{0}(x)=\frac{x}{2}$ and $\phi_{0}=\frac{1}{2}$, one can easily verify that the free boundary of the unique solution of (1.1)-(1.6) is stationary such that $\phi(t) \equiv \frac{1}{2}$ for $0 \leq t<+\infty$. When $v_{0}(x)=\frac{x}{2}$ but $\phi_{0} \neq \frac{1}{2}$, numerical experiments (see [3, 4]) show that, if τ is large enough, the solution exists for $0<t<+\infty$ and $\lim _{t \rightarrow+\infty} \phi(t)=\frac{1}{2}$; while, if τ is small enough, the solution exists only in finite time interval $\left[0, T^{*}\right]$ for some $T^{*}>0$ and the free boundary $x=\phi(t)$ hits the boundary $x=0$ or 1 as $t \rightarrow T^{*}-0$. Moreover, for medium τ, the solution may exist for $0 \leq t<+\infty$ and oscillate around $x=\frac{1}{2}$. YM. Lee, R. Schaaf and R. C. Thompson [4] studied this phenomenon in the view of the bifurcation theory and proved that there exists a critical $\tau_{c}>0$ such that, as τ decreasingly crosses τ_{c}, the steady solution of (1.1)-(1.2) and (1.4)-(1.5) transfers from stable to unstable.

In this paper we shall rigorously prove that, if τ is large enough, the solution of (1.1)-(1.6) exists for $0<t<+\infty$; while, if τ is small enough, the solution exists only in finite time. In order to give a precise statement of our results, we need some notations and assumptions.

Set

$$
\left\{\begin{array}{l}
v^{-}(x)=v(x), \text { for } 0 \leq x \leq \phi(t), t \geq 0 \tag{1.10}\\
v^{+}(x)=v(x), \text { for } \phi(t) \leq x \leq 1 . t \geq 0
\end{array}\right.
$$

Then, it is easy to verify that (1.1)-(1.6) is equivalent to the following free boundary problem:

$$
\begin{align*}
& \frac{1}{\tau} v_{t}^{-}=v_{x x}^{-}-2 v^{-}, \quad 0<x<\phi(t), t>0 \tag{1.11}\\
& \frac{1}{\tau} v_{t}^{+}=v_{x x}^{+}-2 v^{+}+1, \quad \phi(t)<x<1, t>0 \tag{1.12}
\end{align*}
$$

