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Abstract We discuss the solution of the Cauchy problem of the generalized Davey-
Stewartson equation. When the initial value is small enough, we obtain the global
wellposedness of the solution and scattering.
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1. Introduction

In this paper we will prove the global wellposedess and scattering result for the
Cauchy problem of the generalized Davey-Stewartson equation when the datum is small
enough.In [1], Wang Baoxiang, Guo Boling studied the generalized Davey-Stewartson
equation,

iut + Au = λ1|u|p1u + λ2|u|p2u + µE(|u|2)u, (1.1)

where u(t, x)(x = (x1, x2, ..., xn))is a complex function of (t, x) ∈ R+×Rn. λ1, λ2, µ ∈ C,

A :=
∑

1≤i,j≤n

aij
∂2

∂xi∂xj
,

E(ϕ) = F−1
[ ξ2

1∑
1≤i,j≤n bijξiξj

]
Fϕ. (1.2)

In the above, F(F−1) denotes Fourier (converse) transform, (aij), (bij) are real invert-
ible matrices satisfying ∣∣∣ ∑

1≤i,j≤n

bijξiξj

∣∣∣ ≥ C|ξ|2,∀ξ ∈ Rn, (1.3)

In this paper, we will study the initial value problem of the generalized Davey-
Stewartson equation with the form :

iut + Au = λ|u|2q−2u + µE(|u|q)|u|q−2u, (1.4)



90 Shen Caixia Vol.17

u(0, x) = u0(x), (1.5)

where λ, µ ∈ C, A,E(ϕ)are defined in (1.2), respectively.
For any 4/n ≤ p < ∞ and r ∈ [2,∞),we denote:

s(p) =
n

2
− 2

p
,

2
γ(r)

= n(
1
2
− 1

r
), r(p) =

2n(2 + p)
n(2 + p)− 4

, (1.6)

α(n) =


2n

n− 2
, n > 2

∞, n = 2
. (1.7)

Our main result is as follows:
Theorem 1.1 Suppose n ≥ 2, 2 ≤ q < ∞, s(2q − 2) =

n

2
− 1

q − 1
,and there exists

δ1 > 0, such that, when ‖u0‖H2q−2 ≤ δ1, (1.4),(1.5) has a unique solution satisfying

u ∈ C
(
0,∞;Hs(2q−2)

)⋂ ⋂
2<r<α(n)

Lγ(r)
(
0,∞;Bs(2q−2)

r,2

)
.

Theorem 1.2 Suppose n ≥ 2, 2 ≤ q < ∞, s(2q − 2) =
n

2
− 1

q − 1
,and there exists

δ1 > 0 such that, when ‖u0‖H2q−2 ≤ δ1,the solution of (1.4)(1.5) has scattering.
The proof of Theorem 1.2 is omitted.
Let S(t) be a semi-group generated by i ∂

∂t +A. From [2] we can obtain the time-space
Strichartz estimate:

‖S(t)f‖Lγ(r)(−∞,∞;Ḃs
r,2) ≤ ‖f‖Ḣs , (1.8)∥∥∥∥∥∥

t∫
0

S(t− τ)f(τ)dτ

∥∥∥∥∥∥
Lγ(r)(0,T ;Ḃs

r,2)

≤ C‖f‖Lγ(q)′ (0,T ;Ḃs
q′,2), (1.9)

where q, r ∈ [2, α(n)), 0 < T ≤ ∞, and C is independent of T. If f =
∑I

i=1 fi, r, qi ∈
[2, α(n)), i = 1, 2, ..., I, from (1.9) we get:∥∥∥∥∥∥

t∫
0

S(t− τ)f(τ)dτ

∥∥∥∥∥∥
Lγ(r)(0,T ;Ḃs

r,2)

≤ C
I∑

i=1

‖fi‖Lγ(qi)
′
(0,T ;Ḃs

q′
i
,2

)
. (1.10)

2. The Nonlinear Estimates

Lemma 2.1([1]) ∀1 < p < ∞, we get:

ρ(ξ) =:
ξ2
1∑

1≤i,j≤n bijξiξj
∈Mp.

where (bij) satisfies (1.3), Mp denotes multiplier space.


