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Abstract In this paper, we study the existence of the global attractor Aε of
reaction-diffusion equation

∂tu
ε(x, t) = Aεu

ε(x, t)− f(x, ε−1x, uε(x, t)),

and the homogenized attractor A0 of the corresponding homogenized equation, then
give explicit estimates for the distance between the attractor Aε and the homogenized
attractor A0 .
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1. Introduction and Main Results

We consider the reaction-diffusion system{
∂tu

ε(x, t) = Aεu
ε(x, t)− f(x, ε−1x, uε(x, t)), (x, t) ∈ Ω×R+,

uε(x, t)|∂Ω = 0, uε(x, t)|t=0 = u0,
(1.1)

where Ω is a bounded domain in R3 and 0 < ε ≤ ε0 < 1. Here uε = uε(x, t) =
(u1

ε, · · · , uk
ε) is an unknown vector-valued function. The second order elliptic differential

operators Aε have the form as follows:

Aεu := diag(A1
εu

1, · · · , Ak
εu

k), (1.2)

with

Al
εu

l =
3∑

i,j=1

∂xi(a
l
ij(ε

−1x)∂xju
l(x)), (1.3)
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where the functions al
ij(y), l = 1, · · · , k , y ∈ R3 , are assumed to be symmetric, smooth

and Y-periodic with respect to y ∈ R3, where Y ⊂ R3 is a fixed cube. The uniform
ellipticity condition

3∑
i,j=1

al
ij(y)ζiζj ≥ ν|ζ|2, ∀y, ζ ∈ R3, (1.4)

is also assumed (with an appropriate ν > 0) to be valid for operators Al
ε. We impose

that f(x, y, u) is almost-periodic ([1]) with respect to y ∈ R3 and satisfies the conditions
as follows:

f ∈ C1(Rk,Rk), ∂zf(x, y, z)ζζ ≥ −C2ζζ, ∀ζ ∈ Rk, (1.5)

|f(x, y, u)| ≤ C(1 + |u|p), ∀(x, y) ∈ Ω×R3, (1.6)

k∑
l=1

f lul|ul|pl ≥ C
k∑

l=1

|ul|pl+2 − C1, ∀u ∈ Rk, (1.7)

where p ≥ 1, pi ≥ 2(p − 1) , i = 1, · · · , k. It is assumed also that the initial data
u0 ∈ (L2(Ω))k.

Efendiev and Zelik (see [2]) studied the problem (1.1) when f(x, y, u) is independent
of y. Fiedler and Vishik (see [3]) studied the case when the Aεu in (1.1) is replaced
by a∆u. In fact, one can obtain the existence of solutions and attractors for (1.1)
with f(x, y, u) depending on y by the standard method as those in [4]. However,
when estimate the distance between the attractors for (1.1) and the attractors of the
homogenized equation, the arguments in [2] or [3] don’t work. We have to overcome
these difficulties by combining the ideas in [3], [2] and analyzing carefully the properties
of periodic and almost-periodic functions.

In order to simplify our expression, we denote H = (L2(Ω))k, V = (W 1,2
0 (Ω))k,

F = (L∞(Ω))k, ‖ · ‖(W l,p(Ω))k=‖ · ‖l,p.
Theorem 1.1 If the assumptions (1.2)− (1.7) hold, and the initial data u0 ∈ H,

then for any T > 0, ε > 0, the problem (1.1) possesses a unique solution uε(x, t) ∈
L∞([0, T ];H)∩L2([0, T ];V ), uε ∈ C(R+;H). The mapping Sε

t : u0 −→ uε(x, t) defines
a continuous semigroup Sε

t : H −→ H. If, furthermore, u0 ∈ V , then uε(x, t) ∈
L∞([0, T ];V ) ∩ L2([0, T ];W 2,2(Ω)), uε ∈ C(R+;V ) .

Theorem 1.2 If the assumptions (1.2) − (1.7) hold, and u0 ∈ H, then for every
ε > 0, the semigroup Sε

t generated by the equation (1.1) possesses a global compact
attractor Aε in H.

Theorem 1.1 can be proved by the Faedo-Galerkin method with the help of R.Temam
[4], and the details of the proof are omitted. Similar arguments as in [4] for the problem
(1.1) yield the a prior estimates needed about uε(x, t) in H and V , and we omit the
details. Then Theorem 1.2, whose proof is also omitted, can be easily proved by the
standard arguments [4, Theorem 1.1.1].

By the standard homogenization theory, one can obtain the homogenized problem
(2.11), for which one can prove the similar results to Theorems 1.1 and 1.2. In order to


