AN INITIAL-BOUNDARY-VALUE PROBLEM FOR THE MODIFIED KORTEWEG-DE VRIES EQUATION IN A QUARTER PLANE

Shen Caixia
(Graduate School of China Academy of Engineering Physics, Beijing, 100088, China)
(E-mail: shencaixia@tom.com)
Guo Boling
(Institute of Applied Physics and Computational Mathematics, Beijing, 100088, China)
(E-mail: gbl@mail.iapcm.ac.cn)
(Received Sep. 29, 2004; revised Jul. 11, 2005)

Abstract

In this paper, we obtain some linear estimates, trilinear estimates. Through these estimates, we prove the local wellposeness of modified Korteweg-de Vries equation in a quarter plane.

Key Words the modified Korteweg-de Vries equation; initial-boundary-value problem; well-posedness.

2000 MR Subject Classification 35L70, 35B10, 37L10.
Chinese Library Classification O175.29.

1. Introduction

The KdV equations are of the form:

$$
u_{t}+u_{x x x}+P(u)_{x}=0
$$

where $u(x, t)$ is a function of one space and one time variable, and $P(u)$ is some polynomials of u. Historically, these types of equations first arose in the study of 2 D shallow wave propagation, but have since appeared as limiting cases of many dispersive models.

When $P(u)=C u^{k+1}$, the equation is referred to as generalized KdV of order k , or gKdV-k, gKdV-1 is the original Korteveg-de Vries equation, gKdV-2 is the modified KdV equation ($m K d V$).
There are a lot of works on the KdV equation for the following pure initial problem (0.1) [1-7]

$$
\left\{\begin{array}{l}
u_{t}+u_{x}+u_{x x x}+u u_{x}=0, x, t \geq 0 \tag{0.1}\\
u(x, 0)=\phi(x)
\end{array}\right.
$$

The problem (0.1) is locally well-posed for initial value ϕ in the space H^{s} for $s>-\frac{3}{4}$ in Kenig ,Ponce ,and Vega [2] , and Tao proved the problem (0.1) is global well-possed
for initial value ϕ in the space H^{s} for $s>-\frac{3}{4}$ in [7]. These are the best results up to now.

$$
\left\{\begin{array}{l}
u_{t}+u_{x}+u_{x x x}+u u_{x}=0, x, t \geq 0 \tag{0.2}\\
u(x, 0)=\phi(x) \\
u(0, t)=h(t)
\end{array}\right.
$$

As for the KdV equation for initial-boundary problem (0.2), we have the following : It is locally well-posed for initial data in the space $H^{s}\left(R^{+}\right)$and boundary data h in the space $H_{l o c}^{(s+1) / 3}$ satisfying certain compatibility conditions for $s>3 / 4$, whereas global well-posed holds for $\phi \in H^{s}\left(R^{+}\right), h \in H_{l o c}^{(7+3 s) / 12}$ when $1 \leq s \leq 3$ and for $\phi \in$ $H^{s}\left(R^{+}\right), h \in H_{l o c}^{(s+1) / 3}$ when $s \geq 3$.

In this paper we want to discuss the following problem

$$
\left\{\begin{array}{l}
u_{t}+u_{x}+u_{x x x}+u^{2} u_{x}=0, x, t \geq 0 \tag{1.1}\\
u(x, 0)=\phi(x) \\
u(0, t)=h(t)
\end{array}\right.
$$

i.e. we shall discuss non-homogeneous-value problem for the mKdV equation. We may use some results in [8]directly, and use the modern theory in [9]for the pure initialvalue problem posed on R .

The main theory in this paper are the following:
Theorem 1 Let $T>0$. For a pair of functions $\phi \in H^{1 / 4}\left(R^{+}\right), h \in H^{(1+1 / 4) / 3}(0, T)$, there exists a $T^{*} \in(0, T]$ depending on $\|\phi\|_{H^{1 / 4}\left(R^{+}\right)}+\|h\|_{H^{(1+1 / 4) / 3}(0, T)}$ such that (4.1) admits a unique solution u and $\Omega^{T^{*}}(u) \leq \infty$.

Theorem 2 Let $T>0, s \geq \frac{1}{4}$. For a pair of functions $\phi \in H^{s}\left(R^{+}\right), h \in$ $H^{(1+s) / 3}(0, T)$, there exists a $T^{*} \in(0, T]$ depending on $\|\phi\|_{H^{s}\left(R^{+}\right)}+\|h\|_{H^{(1+s) / 3}(0, T)}$ such that (4.1) admits a unique solution u and $\Omega^{T^{*}}(u) \leq \infty$, where $\Omega^{T}(\cdot)$ will be explained in Section 3.

The proof of Theorem 2 is omitted.

2. The Linear Estimates

We consider the non-homogeneous boundary value problem

$$
\left\{\begin{array}{c}
u_{t}+u_{x}+u_{x x x}=0, \quad x, t \geq 0 \tag{2.1}\\
u(x, 0)=0 \\
u(0, t)=h(t)
\end{array}\right.
$$

By use of the Laplace transform and the theory of ordinary difference equations, we get the solution of (2.1) is:

$$
u(x, t)=\left[W_{b}(t) h\right](x)=\left[U_{b}(t) h\right](x)+\overline{\left[U_{b}(t) h\right](x)}, x, t \geq 0
$$

