
J. Partial Diff. Eqs. 18(2005), 263–266
c©International Academic Publishers Vol.18 No.3
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Abstract Consider the Cauchy problem for a wave equation on R2: utt −∆u =
|u|p−1u. In 1981 Glassey gave a guess to a critical value p(2) = 1

2

(
3 +

√
17

)
: when

p > p(2) there may exist a global solution and when 1 < p < p(2) the solution may
blow up. By our main result in this paper a counter example to the guess is given that
the solution may also blow up in finite time even if p(2) < p < 5.
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Consider the Cauchy problem for a wave equation on R2:




∂2u(x, t)
∂t2

−∆u = |u|p−1u, x ∈ R2, 0 < t < T,

u(x, 0) = f(x), ut(x, 0) = g(x), x ∈ R2,

(1)

where we assume that
(H1) f(x), g(x) ∈ C∞

0 (R2), supp{f, g} ⊂ {‖x‖ ≤ L},
∫

R2

fdx > 0,

∫

R2

gdx > 0.

Theorem(Glassey[1]) When 1 < p < p(2) = 1
2

(
3 +

√
17

)
, T < +∞, i.e the

solution of (1) may blow up in finite time T < +∞.
In Case R3, John[2] gave the critical value p(3) = 1 +

√
2: when 1 < p < p(3)

the solution may blow up and when p > p(3) there may exist global solution. Thus,
Glassey gave a guess that p(2) may also be a critical value for blow up: there may exist
a global solution if p > p(2). But a counter example can be given to Glassey’s guess
by our following main result.

Theorem Let u(x, t) ∈ C2(R2 × [0, T ]) be a nontrivial solution of (1) with finite
speed of propagation. Assume that
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(H1) The same as Glassey Theorem, and
∫
R2 fgdx > 0, f(x) 6≡ 0,

(H2) 3 < p < 5,
(H3) I0 = 2

p+1

∫
R2 |f |p+1dx− [∫

R2

(|∇f |2 + |g|2) dx
] ≥ 0.

Then T < +∞, i.e the solution of (1) may blow up in finite time T < +∞.
Remark It is well known that (H1) implies the existence of a unique classical

solution to (1).
Proof We will estimate F (t) =

∫
R2 u2(x, t)dx by using the method similar to[3].

First, multiplying the equation (1) by u(x, t) and integrating over R2, we have

1
2
F ′′(t) =

p− 1
p + 1

∫

R2

|u|p+1dx +
2

p + 1

∫

R2

|u|p+1dx +
∫

R2

|ut|2dx−
∫

R2

|∇u|2dx. (2)

Next, multiplying the equation (1) by ut and integrating over R2 × [0, t] we have
∫

R2

|ut|2dx =
2

p + 1

∫

R2

|ut|p+1dx−
∫

R2

|∇u|2dx− I0. (3)

By (H3), (2) and (3) yield

1
2
F ′′(t) =

p− 1
p + 1

∫

R2

|u|p+1dx + 2
∫

R2

|ut|2dx + I0. (4)

Thus F ′′(t) ≥ 0 and F ′(t) is monotone nondecreasing. Therefore F ′(t) ≥ F ′(0) > 0 by
(H1), and F (t) is also monotone nondecreasing , thus F (t) ≥ F (0) =

∫
R2 f2dx > 0.

Now, by finite speed of propagation and by (H1), we have

F (t) =
∫

R2

u2dx =
∫

‖x‖≤t+L
u2dx ≤

{∫

‖x‖≤t+L
|u|p+1dx

} 2
p+1

{∫

‖x‖≤t+L
1dx

} p−1
p+1

i.e.

F (t)
p+1
2 ≤ π

p−1
2 (t + L)p−1

∫

R2

|u|p+1dx. (5)

Combining (5) with (4), we obtain

F ′′(t) ≥ C0(t + L)1−pF (t)
p+1
2 (6)

but F (t) ≥ F (0) =
∫
R2 f2dx > 0, thus

F ′′(t) ≥ k0(t + L)1−p,

so

F ′(t) ≥ F ′(0) +
k0

2− p
(t + L)2−p − k0

2− p
L2−p.


