NONLINEAR INSTABILITY OF EQUILIBRIUM SOLUTION FOR THE GINZBURG-LANDAU EQUATION

Guo Boling and Yuan Rong
(Institute of Applied Physics and Computational Mathematics, Beijing 100088, China)
(E-mail: dbehloul@usthb.dz)
(Received Apr. 1, 2004; revised Dec. 3, 2004)

Abstract

We study the nonlinear instability of plane wave solutions to a GinzburgLandau equation with derivatives. We show that, under some condition in coefficient of the equation, these waves are unstable.

Key Words Nonlinear instability; Ginzburg-Landau equation. 2000 MR Subject Classification 35L05, 35L15. Chinese Library Classification O175.29, O175.27.

1. Introduction

In this paper, we consider the following Ginzburg-Landau equation [1-4]

$$
\begin{gather*}
W_{t}=\alpha_{1} W_{x x}+(\lambda(|W|)+i \omega(|W|)) W \\
+\alpha_{3}|W|^{2} W_{x}+\alpha_{4} W^{2} \bar{W}_{x} \tag{1.1}
\end{gather*} \quad, \quad x \in \Re, t>0
$$

with the periodic initial value problem

$$
\left\{\begin{array}{l}
W(x, 0)=W_{0}(x), \quad x \in \Re \tag{1.2}\\
W(x-D, t)=W(x+D, t), \quad D>0, x \in \Re, t \geq 0
\end{array}\right.
$$

where $W(x, t)$ is a complex-value function, $\alpha_{j}=a_{j}+\mathrm{i} b_{j} \in \Im$,

$$
\left\{\begin{array}{l}
\lambda(r)=c_{1}+c_{2} r^{2}+c_{3} r^{4} \tag{1.3}\\
\omega(r)=d_{1} r^{2}+d_{2} r^{4}
\end{array}\right.
$$

with $c_{j}, d_{j} \in \Re$. For convenience, let $\alpha_{1}=1$. One of the equilibrium solutions to the Ginzburg-Landau equation is the following plane wave

$$
\begin{equation*}
W_{p}(x, t)=r_{0} e^{-i \theta_{0} x} \tag{1.4}
\end{equation*}
$$

and

$$
\left\{\begin{array}{l}
\lambda\left(r_{0}\right)=\theta_{0}^{2}-\left(b_{3}-b_{4}\right) r_{0}^{2} \theta_{0} \tag{1.5}\\
\omega\left(r_{0}\right)=\left(a_{3}-a_{4}\right) r_{0}^{2} \theta_{0}
\end{array}\right.
$$

T. Kapitula [4] shows that, as

$$
\frac{2^{3 / 4}+\max \left\{1,\left(2 /\left|\Gamma_{3}\right|\right)^{3 / 4}\right\}}{\left|\Gamma_{3}\right|}\left|r_{0}\left(B_{-} r_{0}^{2}-2 \theta_{0}\right)\right|<1
$$

and the initial energy $E_{0}=\left\|W_{0}\right\|_{H^{1}}+\left\|W_{0}\right\|_{L^{1}}$ is small enough, these waves are nonlinear stable, where

$$
B_{-}=b_{3}-b_{4} \quad \text { and } \quad \Gamma_{3}=r_{0} \lambda^{\prime}\left(r_{0}\right)+2 B_{-} r_{0}^{2} \theta_{0}<0
$$

In present paper, we show that, under some conditions in coefficient of the equation, these waves are nonlinear unstable. We have the following main theorem.

Theorem 1.1 Let $\Gamma_{3}>0$ and $\inf \left\{\operatorname{Re} \lambda: \lambda \in \sigma_{+}(\mathcal{L})\right\}>0$. Then the plane wave solutions of the equation (1.1) is nonlinear unstable. The operator \mathcal{L} will be defined later.

Let

$$
\begin{equation*}
W(x, t)=r(x, t) e^{-i \theta(x, t)} \tag{1.6}
\end{equation*}
$$

then, the equation (1.1) becomes

$$
\left\{\begin{array}{l}
r_{t}=r_{x x}+r \lambda(r)-r \theta_{x}^{2}+A_{+} r^{2} r_{x}+B_{-} r^{3} \theta_{x} \tag{1.7}\\
\theta_{t}=\theta_{x x}-\omega(r)+\frac{2 r_{x}}{r} \theta_{x}-B_{+} r r_{x}+A_{-} r^{2} \theta_{x}
\end{array}\right.
$$

where

$$
A_{ \pm}=a_{3} \pm a_{4}, \quad B_{ \pm}=b_{3} \pm b_{4}
$$

Our idea of proof is using the principle of Linearized Instability in [5] (see p.344, Theorem 9.1.3 in [5]) and Theorem 9.1.3([5], p.344) under the assumption

$$
\left\{\begin{array}{l}
\sigma_{+}(A)=\sigma(A) \cap\{\lambda \in \mathbf{C} \mid \operatorname{Re} \lambda>0\} \neq \emptyset \tag{1.8}\\
\inf \left\{\operatorname{Re} \lambda: \lambda \in \sigma_{+}(A)\right\}=w_{t}>0
\end{array}\right.
$$

Then the problem $u^{\prime}(t)=A u(t)+G(u(t)), t>0, u(0)=u_{0}$ nontrivial backward solution $v \in C^{\alpha}([-\infty, o] ; 0, w)$ with $v^{\prime} \in C^{\alpha}([-\infty, o] ; X, w)$ for every $\alpha \in[0,1]$ and $w \in\left[0, w_{t}\right]$. It follows that the null solution of (1.8) is unstable, where $A: D(A) \subset X \rightarrow X$ is a linear operator such that $A: D(A) \rightarrow X$ is sectorial and the graph norm of A is equivalent to the norm of $D . X$ is a general Banach space.

For this, we need the spectral analysis for the linearized equation.
In the paper, $\|\cdot\|_{p}$ represents the norm in the space $L_{p}(\Re)$ and $\|\cdot\|_{H^{k}}$ the norm in the Sobolev space $H^{k}(\Re)$.

