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Abstract This paper is concerned with the existences of positive solutions of the
following Dirichlet problem for p-mean curvature operator with supercritical potential:

{
−div((1 + |∇u|2) p−2

2 ∇u) = λur−1 + µuq−1

|x|s , u > 0 x ∈ Ω,

u = 0 x ∈ ∂Ω

where u ∈ W 1,p
0 (Ω), Ω is a bounded domain in RN (N > p > 1) with smooth boundary

∂Ω and 0 ∈ Ω, 0 < q < p, 0 ≤ s < N
p (p − q) + q, p ≤ r < p∗, p∗ = Np

N−p , µ > 0.

It reaches the conclusion where this problem has two positive solutions in the different
cases . It discusses the existences of positive solutions of the Dirichlet problem for the
p-mean curvature operator with supercritical potential firstly. Meanwhile, it extends
some results of the p-Laplace operator to that of p-mean curvature operator for p ≥ 2 .
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1. Introduction

As the elliptic equation with critical potential is widely applied in many majors,
especially in physics. So many authors have studied extensively these problems re-
cently. But most of them are for the Laplace or p-Laplacian operator with the convex
nonlinearities (see [1-4]).
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For the concave and convex nonlinearities, Antonio Ambroseti, Haim Brezis and
Giovanna Cerami [5] researched the following problem in 1994

{
−∆u = λuq + up, u > 0 x ∈ Ω,

u = 0 x ∈ ∂Ω
(1.1)

where 0 < q < 1 < p ≤ N+2
N−2 , λ > 0. It reached the conclusion where the above problem

had two positive solutions for λ ∈ (0,Λ), by using Mini-Max Principle and the method
of sub-and supersolutions , where Λ was some positive constant .

Lately, for the concave and convex nonlinearities and critical potential, in 2002, B.
Abdellaoui and I. Peral [6] researched the following problem

{
−∆u = λ uq

|x|2 + ur, u > 0 x ∈ Ω,

u = 0 x ∈ ∂Ω
(1.2)

where u ∈ W 1,p
0 (Ω), Ω is a bounded domain in RN (N > p > 1) with smooth boundary

∂Ω and 0 ∈ Ω, 0 < q < 1 < r < 2∗ − 1, N ≥ 3, λ > 0. It reached the same
conclusion (see Theorem 2.7) as that of [5] also by using Max-Minimum Principle and
the variational methods.

As p-mean curvature operator is useful in geometry, many authors have studied
the Dirichlet problem for this operator , such as Shen yaotian([7-9]) has studied the
existence of infinitely many solutions for this operator without potential and critical
exponents. Resently, Chen zhihui [10] has proved the existence of infinitely many so-
lutions for this operator without potential and critical exponents, by using Mountain
Pass Principle with (PSC) conditions. But to my best knowledge, less attention has
been given to the solutions of the problems for the p-mean curvature operator with the
concave and convex nonlinearities and potential. As lacking the homogeneous prop-
erty for the p-mean curvature operator, it is difficult to prove that the corresponding
functional satisfies Mountain Pass Geometry.

Now we study the case q < p, r > p, i.e. the so-called convex-concave case in
this paper. In the case of s = p = 2, i.e., the potential |x|−2 was called critical in [6].
But we think the critical potential is correlate with the potential |u|2

|x|2 . In this paper,

as N
p (p − q) + q > p, the singularity is higher than that of p = 2. So we say that the

behaviour of the potential is supercritical.
In this paper, we consider the following problem with supercritical potential

{
−div((1 + |∇u|2) p−2

2 ∇u) = λur−1 + µuq−1

|x|s , u > 0 x ∈ Ω,

u = 0 x ∈ ∂Ω
(1.3)

where u ∈ W 1,p
0 (Ω), Ω is a bounded domain in RN (N > p > 1) with smooth boundary

∂Ω and 0 ∈ Ω, 0 < q < p, 0 ≤ s < N
p (p− q) + q, p ≤ r < p∗, p∗ = Np

N−p , λ, µ > 0. By
using Ekeland’s variational principle and Max-Minimum Principle and Mountain Pass


