THE CAUCHY PROBLEM OF NONLINEAR SCHRÖDINGER-BOUSSINESQ EQUATIONS IN $H^{s}\left(R^{d}\right)$

Han Yongqian
(Institute of Applied Physics and Computational Mathematics, P.O. Box 8009-28, Beijing 100088)
(E-mail: han_yongqian@mail.iapcm.ac.cn)
(Received May. 13, 2004; revised Aug. 26 2004)

Abstract

In this paper, the local well posedness and global well posedness of solutions for the initial value problem (IVP) of nonlinear Schrödinger-Boussinesq equations is considered in $H^{s}\left(R^{d}\right)$ by resorting Besov spaces, where real number $s \geq 0$.

Key Words Schrödinger-Boussinesq equation; global solutions in Besov spaces. 2000 MR Subject Classification 35Q35, 35K45. Chinese Library Classification O175.29.

1. Introduction

We consider the existence and uniqueness of the local solutions and global solutions for the following initial value problem (IVP) of nonlinear Schrödinger-Boussinesq equations

$$
\begin{align*}
& i \epsilon_{t}+\Delta \epsilon-n \epsilon-A|\epsilon|^{p} \epsilon=0 \tag{1.1}\\
& n_{t t}-\Delta\left(n-\Delta n+B n^{K+1}+|\epsilon|^{2}\right)=0, \quad x \in R^{d}, t \in R \tag{1.2}\\
& \epsilon(x, 0)=\epsilon_{0}(x), \quad n(x, 0)=n_{0}(x), \quad n_{t}(x, 0)=\Delta \phi_{0}(x), \quad x \in R^{d} \tag{1.3}
\end{align*}
$$

where A and B are constants, K is a positive integer, real number $p>0 ; \epsilon$ and ϵ_{0} are complex functions; n, n_{0} and ϕ_{0} are real functions; Δ is Laplacian operator in R^{d}.

The nonlinear Schrödinger (NLS) equation models a wide range of physical phenomena including self-focusing of optical beams in nonlinear media, propagation of Langmuir waves in plasmas, etc. (see [1] and the references therein). Boussinesq equation as a model of long waves is derived in the studies of the propagation of long waves on the surface of shallow water[2], the nonlinear string [3] and the shape-memory alloys[4], etc. The nonlinear Schrödinger-Boussinesq equations (1.1)(1.2) is considered as a model of interactions between short and intermediate long waves, which is derived
in describing the dynamics of Langmuir soliton formation and interaction in a plasma [5-7] and diatomic lattice system [8], etc.

The Solitary wave solutions and integrability of nonlinear Schrödinger-Boussinesq equations has been considered by several authors, see $[5,6,9]$ and the references therein. In [10] Guo established the existence and uniqueness of global solution for IVP (1.1)(1.3) in H^{k} (integer $k \geq 4$) with $d=1$ and $A=0$. In [11] the existence and uniqueness of global solution for Cauchy problem of dissipative Schrödinger-Boussinesq equations in H^{k} (integer $k \geq 4$) with $d=3$ is proved by Guo and Shen. For damped and dissipative Schrödinger-Boussinesq equations with initial boundary value, the existence of global attractors and the finiteness of the Hausdorff and the fractal dimensions of the attractor is established by Guo and Chen $([12], \mathrm{d}=1)$ and Li and Chen $([13], d \leq 3)$, respectively.

In this paper, the local well-posedness in H^{s}, the conservation of energy and the global well-posedness in H^{s} (real number $s \geq 1$ and $d=1,2,3$) of IVP (1.1)-(1.3) is proved.

Definition 1 (admissible pair) The pair (q, r) is admissible if $\frac{2}{q}=d\left(\frac{1}{2}-\frac{1}{r}\right)$; $2 \leq r \leq \infty$ for $d=1,2 \leq r \leq \infty$ for $d=2,2 \leq r<\frac{2 d}{d-2}$ for $d \geq 3$.

Definition 2 (condition $P(m)$) For a positive integer m, it is called that p satisfies the condition $P(m)$ if either p is an even integer, or p is not an even integer and $p+1>m$.

The main theorems of this paper are stated as follows.
Theorem 1 Suppose that $\epsilon_{0}, n_{0}, \phi_{0} \in H^{s}\left(R^{d}\right), 0 \leq s<\frac{d}{2}, K$ is an integer, p satisfies the condition $P([s]+1), 0<p, K \leq \frac{4}{d-2 s}$; then for any admissible pair (q, r), there exists $T=T\left(\epsilon_{0}, n_{0}, \phi_{0}\right)>0$ and a unique solution (ϵ, n) of IVP (1.1)-(1.3) such that

$$
\epsilon, n,(-\Delta)^{-1} n_{t} \in L^{q}\left(0, T ; B_{r, 2}^{s}\left(R^{d}\right)\right) \cap C\left([0, T] ; H^{s}\left(R^{d}\right)\right)
$$

Moreover, this solution has the following additional properties.
(I) Let $p, K<\frac{4}{d-2 s}$. If $\epsilon_{0 j}, n_{0 j}, \phi_{0 j}$ are sequences in $H^{s}\left(R^{d}\right)$ with $\left(\epsilon_{0 j}, n_{0 j}, \phi_{0 j}\right)$ $\rightarrow\left(\epsilon_{0}, n_{0}, \phi_{0}\right)$, then there exists $\tilde{T}=\tilde{T}\left(\epsilon_{0}, n_{0}, \phi_{0}\right) \in(0, T]$, such that the solutions $\left(\epsilon_{j}, n_{j}\right) \rightarrow(\epsilon, n)$ and $(-\Delta)^{-1} \partial_{t} n_{j} \rightarrow(-\Delta)^{-1} n_{t}$ in $L^{q}\left(0, \tilde{T} ; L^{r}\left(R^{d}\right)\right)$, where $\left(\epsilon_{j}, n_{j}\right)$ are solutions of IVP (1.1)-(1.3) with $\left(\epsilon_{0}, n_{0}, \phi_{0}\right)$ replaced by $\left(\epsilon_{0 j}, n_{0 j}, \phi_{0 j}\right)$. If $s \geq$ 1, then $\left(\epsilon_{j}, n_{j}\right) \rightarrow(\epsilon, n)$ and $(-\Delta)^{-1} \partial_{t} n_{j} \rightarrow(-\Delta)^{-1} n_{t}$ in $C\left([0, \tilde{T}] ; H^{s-1}\left(R^{d}\right)\right) \cap$ $L^{q}\left(0, \tilde{T} ; B_{r, 2}^{s-1}\right)$. Moreover, if p satisfies the condition $P([s]+2)$, then $\left(\epsilon_{j}, n_{j}\right) \rightarrow$ (ϵ, n) and $(-\Delta)^{-1} \partial_{t} n_{j} \rightarrow(-\Delta)^{-1} n_{t}$ in $C\left([0, \tilde{T}] ; H^{s}\left(R^{d}\right)\right) \cap L^{q}\left(0, \tilde{T} ; B_{r, 2}^{s}\right)$.
(II) There exists $T^{\star}=T^{\star}\left(\epsilon_{0}, n_{0}, \phi_{0}\right)>0$ such that the solution $\epsilon, n,(-\Delta)^{-1} n_{t} \in$ $C\left(\left[0, T^{\star}\right) ; H^{s}\left(R^{d}\right)\right) \cap L_{l o c}^{q}\left(0, T^{\star} ; B_{r, 2}^{s}\left(R^{d}\right)\right)$. If $T^{\star}<\infty$, then

$$
\lim _{t \rightarrow T^{\star}}\left\{\left\|(-\Delta)^{\frac{s}{2}} \epsilon(\cdot, t)\right\|_{L^{2}}+\left\|(-\Delta)^{\frac{s}{2}} n(\cdot, t)\right\|_{L^{2}}+\left\|(-\Delta)^{\frac{s-2}{2}} n_{t}(\cdot, t)\right\|_{L^{2}}\right\}=+\infty
$$

