EXISTENCE OF POSITIVE ENTIRE SOLUTIONS FOR POLYHARMONIC EQUATIONS AND SYSTEMS

Liu Jiaquan

(LMAM, School of Mathematical Science, Beijing University, Beijing, 100871, China) (E-mail: jiaquan@math.pku.edu.cn) Guo Yuxia

(Department of Mathematics, Tsinghua University, Beijing, 100084, China) (E-mail: yguo@math.tsinghua.edu.cn)

Zhang Yajing

(LMAM, School of Mathematical Science, Beijing University, Beijing, 100871, China)

Dedicated to Professor Chang Kung-Ching on the occasion of his 70th birthday (Received May 18, 2006)

Abstract In this paper, the existence results of positive entire solutions for supercritical polyharmonic equations and system are given.

Key Words Positive entire solutions; polyharmonic equations; polyharmonic systems.

2000 MR Subject Classification 35B05, 35B45. **Chinese Library Classification** 0175.29, 0175.4.

1. Introduction

This paper is devoted to the study of the existence of positive entire solutions for polyharmonic equation

$$(-\Delta)^m u = u^p, \ u > 0 \text{ in } \mathbb{R}^N, \ N > 2m.$$

$$(1.1)$$

and the polyharmonic systems

$$\begin{cases} (-\Delta)^m u = v^q, \quad u > 0, \\ (-\Delta)^m v = u^p, \quad v > 0 \end{cases} \quad \text{in } \mathbb{R}^{\mathbb{N}}, \quad N > 2m.$$

$$(1.2)$$

It is known that the Sobolev's exponent $p^* = \frac{N+2m}{N-2m}$ is critical for the existence of positive solutions of equation (1.1). The following results are known (see [1, 2]):

(1) If 0 , then (1.1) has no bounded solutions;

- (2) If 1 , then (1.1) has no solutions;
- (3) If $p = p^*$ then (1.1) has a family of solutions:

$$u(x) = C_{N,m} \left(\frac{\epsilon}{\epsilon^2 + |x - x_0|^2}\right)^{\frac{N-2m}{2}},$$
(1.3)

where $\epsilon > 0$ and $x_0 \in \mathbb{R}^N$. Moreover, there are no other solutions.

When the problem (1.2) with m = 1 is considered, the system (1.2) becomes the well known Lane-Emden system, namely

$$\begin{cases} -\Delta u = v^q, \quad u > 0, \\ -\Delta v = u^p, \quad v > 0, \end{cases} \quad \text{in } \mathbb{R}^{\mathbb{N}}. \tag{1.4}$$

In this case, the dividing line between the existence and non-existence of positive solution (u, v) defined in the whole of \mathbb{R}^N is the so called critical hyperbola introduced independently in the work of Clement-deFigueiredo-Mitidier [3] and Peletier-Vorst [4]. This hyperbola is defined by

$$\frac{1}{p+1} + \frac{1}{q+1} = \frac{N-2}{N}, \quad p, q > 0.$$
(1.5)

In analogy with the scalar case one may conjecture that (1.4) has no positive solutions defined in the whole of \mathbb{R}^N if p, q satisfy

$$\frac{1}{p+1} + \frac{1}{q+1} > \frac{N-2}{N}, \quad p, q > 0.$$
(1.6)

Although this conjecture has not been settled so far, it was shown in [5], [6] that if p, q satisfy (1.6), then (1.4) has no nontrivial radial positive solution of class C^2 . This result is sharp as far as the critical hyperbola is concerned. Indeed, suppose that p, q > 0 and that

$$\frac{1}{p+1} + \frac{1}{q+1} \le \frac{N-2}{N}, p, q > 0.$$
(1.7)

Serrin-Zou [7] showed that there exist infinitely many pairs $(\xi, \eta) \in \mathbb{R}^+ \times \mathbb{R}^+$ such that (1.4) admits a positive radial solution (u, v) on \mathbb{R}^N with central values $u(0) = \xi, v(0) = \eta$.

Later, the above existence result was generalized by Serrin-Zou [8] for the general Hamiltonian system of the form:

$$\begin{cases} -\Delta u = H_v(u, v), \\ -\Delta v = H_u(u, v), \end{cases} \text{ in } \mathbb{R}^{\mathbb{N}}.$$
(1.8)

For m > 1, the following are known (see [1], [9]): (4) If $N > 2m, p, q \ge 0$ are such that

$$1 > \frac{1}{p+1} + \frac{1}{q+1} > \frac{N-2m}{N},$$