RESOLVING THE SINGULARITIES OF THE MINIMAL HOPF CONES*

Ding Weiyue
(Institute of Mathematics and LMAM Beijing University Beijing, 100082 and Institute of Mathematics, AMSS, Beijing, 100080, P. R. China)
(E-mail: dingwy@math.pku.edu.cn)
Yuan Yu
(Department of Mathematics, Box 354350 University of Washington
Seattle, WA 98195, USA)
(E-mail: yuan@math.washington.edu)
Dedicate to Professor K. C. Chang on his seventieth birthday (Received Apr. 11, 2006)

Abstract

We resolve the singularities of the minimal Hopf cones by families of regular minimal graphs.

Key Words Minimal cones; resolution of singularities 2000 MR Subject Classification 49Q05, 53A10 Chinese Library Classification O186.16.

1. Introduction

In this paper, we resolve the singularities of the minimal Hopf cones found in Lawson and Osserman [1]. The Lipschitz yet non C^{1} minimal graph cone in $\mathbb{R}^{2 m} \times \mathbb{R}^{m+1}$ is

$$
C_{m}=\left\{\left(x, S_{m} \frac{H(x)}{r}\right): x \in \mathbb{R}^{2 m}\right\}
$$

where $m=2,4,8, \quad S_{m}=\sqrt{\frac{2 m+1}{4(m-1)}}, r=|x|$, and the Hopf map $H: \mathbb{R}^{m} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m+1}$ is defined as follows. One identifies \mathbb{R}^{m} with the normed algebra, complex numbers \mathbb{C} $(m=2)$, quaternions $\mathbb{H}(m=4)$, and octonions $\mathbb{O}(m=8)$. Let $x=(u, v) \in \mathbb{R}^{m} \times \mathbb{R}^{m}$, then

$$
H(x)=\left(|u|^{2}-|v|^{2}, 2 v \bar{u}\right)
$$

For each of the minimal Hopf cones, we prove there exist a family of regular minimal graphs in $\mathbb{R}^{2 m} \times \mathbb{R}^{m+1}$ whose tangent cone at ∞ are the minimal Hopf cone C_{m}. To be precise, we have

[^0]Theorem 1.1 There exist a family of analytic minimal graphs

$$
G_{\mu}=\left\{\left(x, \mu^{-1} f(\mu r) \frac{H(x)}{r^{2}}\right): \quad x \in \mathbb{R}^{2 m}\right\}
$$

for $m=2,4,8$, where $\mu>0$ and f satisfies

$$
\begin{aligned}
& 0 \leq f(r)<S_{m} r \\
& 0 \leq f_{r}(r)
\end{aligned}
$$

and for small r near 0

$$
\begin{aligned}
f(r) & =O\left(r^{2}\right) \\
f_{r}(r) & =O(r)
\end{aligned}
$$

while for large r

$$
\begin{aligned}
f(r) & =S_{m} r+O\left(\frac{1}{r^{\delta}}\right) \\
f_{r}(r) & =S_{m}+O\left(\frac{1}{r^{1+\delta}}\right)
\end{aligned}
$$

with $\delta=m-\sqrt{m^{2}-2 m+\frac{1}{2 m}}-1>0$.
Further we have another family of minimal graphs which are "above" each of the minimal Hopf cones in the sense that $f(r)>S_{m} r$. Their tangent cones at ∞ are still the minimal Hopf cone C_{m}. This family of minimal graphs are only regular away from $0 \times \mathbb{R}^{m+1}$, but have finite area near the singular points.

Theorem 1.1. Theorem 1.2 There exist a family of analytic minimal graphs

$$
G_{\mu}=\left\{\left(x, \mu^{-1} f(\mu r) \frac{H(x)}{r^{2}}\right): \quad x \in \mathbb{R}^{2 m} \backslash\{0\},\right\}
$$

for $m=2,4,8$, where $\mu>0$ and f satisfies

$$
\begin{aligned}
f(r) & >S_{m} r \\
f_{r}(r) & \geq 0
\end{aligned}
$$

for small r near 0

$$
\begin{aligned}
f(r) & =O(1) \\
f_{r}(r) & =O(r)
\end{aligned}
$$

for large r

$$
\begin{aligned}
f(r) & =S_{m} r+O\left(\frac{1}{r^{\delta}}\right) \\
f_{r}(r) & =S_{m}+O\left(\frac{1}{r^{1+\delta}}\right)
\end{aligned}
$$

Moreover, in the case $m=2$, one can take $\delta=m+\sqrt{m^{2}-2 m+\frac{1}{2 m}}-1=\frac{3}{2}$.

[^0]: *The second author is partially supported by an NSF grant and a Sloan Research Fellowship.

