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Abstract In this paper we present a necessary and sufficient condition to guaran-
tee the complete reducibility for quasilinear hyperbolic systems and give some examples.
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1. Introduction

In [1] we have introduced the concept of the completely reducible quasilinear hy-
perbolic system and discussed the singularity caused by eigenvectors for this kind of
system in the case of constant eigenvalues. In this paper we will present a method for
checking if a given quasilinear strictly hyperbolic system is completely reducible or not,
and give some examples.

2. A Necessary and Sufficient Condition for a Quasilinear Strictly

Hyperbolic System Being Completely Reducible

Consider the following first order quasilinear strictly hyperbolic system

∂u

∂t
+ A(u)

∂u

∂x
= 0, (2.1)

where u = (u1, · · · , un)T is the unknown vector function of (t, x) and A(u) = (aij(u))
is an n× n matrix with suitably smooth entries aij(u) (i, j = 1, · · · , n).

By strict hyperbolicity, on the domain under consideration A(u) has n distinct real
eigenvalues

λ1(u), λ2(u), · · · , λn(u). (2.2)
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For i = 1, · · · , n, let li(u) = (li1(u), · · · , lin(u)) (resp. ri(u) = (ri1(u), · · · , rin(u))T )
be a left (resp. right) eigenvector corresponding to λi(u):

li(u)A(u) = λi(u)li(u) (resp. A(u)ri(u) = λi(u)ri(u)). (2.3)

All λi(u), li(u) and ri(u) (i = 1, · · · , n) have the same regularity as A(u). Without
loss of generality, we assume that

li(u)rj(u) ≡ δij (i, j = 1, · · · , n), (2.4)

where δij denotes the Kronecker’s symbol.
System (1.1) can be equivalently reduced to the following characteristic form

li(u)
(∂u

∂t
+ λi(u)

∂u

∂x

)
= 0 (i = 1, · · · , n). (2.5)

For i = 1, · · · , n, the i-th equation in (2.5) contains only the directional derivative of u

with respect to t along the i-th characteristic direction
dx

dt
= λi(u).

By the definition given in [1], system (2.1) is m-step (globally) completely reducible,
if there is a global diffeomorphism from Rn to Rn

u = u(ũ) (2.6)

such that the corresponding system for ũ

∂ũ

∂t
+ Ã(ũ)

∂ũ

∂x
= 0 (2.7)

has the following standard form:

Ã(ũ) =




Λ̃(1)(ũ)
Ã21(ũ) Λ̃(2)(ũ)

...
. . .

Ãm1(ũ) · · · Ãm,m−1(ũ) Λ̃(m)(ũ)




, (2.8)

where Λ̃(a)(ũ) (a = 1, · · · ,m) are diagonal matrices, the entries of which are given by
λ̃i(ũ) = λi(u(ũ)) (i = 1, · · · , n) respectively. If this diffeomorphism (2.6) is only valid in
a local domain, system (2.1) is called to be m-step locally completely reducible. If there
is no such diffeomorphism (2.6) even in the local sense, system (2.1) is non-completely
reducible.

Without loss of generality, in what follows we consider only the 2-step completely
reducible case.

By definition, under diffeomorphism (2.6), a 2-step completely reducible quasilinear
strictly hyperbolic system (2.1) can be reduced to the following standard form





∂ũ(1)

∂t
+ Λ̃(1)(ũ)

∂ũ(1)

∂x
= 0,

∂ũ(2)

∂t
+ Λ̃(2)(ũ)

∂ũ(2)

∂x
+ Ã21(ũ)

∂ũ(1)

∂x
= 0,

(2.9)


