
J. Partial Diff. Eqs. 20(2007), 247–251
c©Editorial Board of JPDE and
International Academic Publishers Ltd Vol.20 No.3

SPACE-TIME ESTIMATE TO HEAT EQUATION
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Abstract In this article, we prove the Strichartz type estimate for the solutions
of linear heat equation with initial data in Hardy space H1(Rd). As an application, we
obtain the full space-time estimate to the solutions of heat equation with initial data
in Lp(Rd) for 1 < p < ∞.
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1. Introduction

In this article, we are interested in the space-time estimate for the solution operator:
u

def= eνt∆f, which can also be written as the solution of the following linear heat
equation

∂tu− ν∆u = 0, u(t = 0, x) = f(x). (1.1)

When we restrict (1.1) on QT
def= [0, T ]×Rd, it was proved by Ladyzhenskaya et al. in

[1] that
‖eνt∆f‖Lq([0,T ];Lp

x) . ν
− 1

q ‖f‖Lr , (1.2)

for q, p satisfying 1
q = (1

r −
1
p)d

2 for p ≥ r > 1. The main idea of the proof is to apply
Marcinkiewicz interpolation theorem [2] together with a weak L1 to Lm([0, T ];Ln)
estimate for eνt∆, where m,n satisfy 1

m = (1 − 1
n)d

2 , and the trivial estimate that
‖eνt∆f‖L∞([0,T ]×Rd) ≤ ‖f‖L∞ . Similar estimate was also obtained by Giga in [3], where
the author used this type of estimate to study sorts of nonlinear parabolic equations
and singular set of weak solutions to 3-D incompressible Navier-Stokes equations.

However to our knowledge, the end case of (1.2) for f ∈ H1(Rd) and T = ∞
seems open. Motivated by [4], we are going to prove a full space-time estimate for heat
operator, which in particular covers the above two cases. Now we present the main
result of this paper:
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Theorem 1.1 Let p > 1, q be determined by p via 1
q = (1− 1

p)d
2 . Let f ∈ H1(Rd),

the standard Hardy space ([2]). Then there holds

‖eνt∆f‖Lq
t (Lp

x) . ν
− 1

q ‖f‖H1 .

Consequently, let 1 < r, q, p < ∞ with 1
q = (1

r −
1
p)d

2 for p ≥ r > 1; and f ∈ Lr(Rd),
there holds

‖eνt∆f‖Lq
t (Lp

x) . ν
− 1

q ‖f‖Lr .

2. The Proof of Theorem 1.1

We start with the proof of Theorem 1.1 by the following Lemma:

Lemma 2.1 Let 0 < r ≤ p, let f ∈ Hr(Rd). Then one has

‖eνt∆f‖Lp
x

. (νt)(
1
p
− 1

r
) d
2 ‖f‖Lr , if r > 1;

‖eνt∆f‖Hp
x

. (νt)(
1
p
− 1

r
) d
2 ‖f‖Hr , if r ≤ 1,

where ‖f‖Hr denotes the Hardy norm of f(x).

Proof of Lemma 2.1 In fact, when r > 1, we get by applying Young’s inequality
that

‖eνt∆f‖Lp
x

=
1

(4πνt)
d
2

‖
∫
Rd

e−
|x−y|2

4νt f(y) dy‖Lp
x

. (4νt)(
1
p
− 1

r
) d
2 ‖f‖Lr .

Whereas when r ≤ 1, we denote M∗f(x) def= sup|x−y|≤
√

t |(f ∗K√
t)(y)|, with K√

t(x) =

1

(4πνt)
d
2
e−

|x|2
4νt (see P. 92 of [2]). Then one has

|eνt∆f(x)|r = |(f ∗K√
t)(x)|r ≤ min

|x−y|≤
√

t

[
M∗f(y)

]r

.
1

t
d
2

∫
|x−y|≤

√
t
|M∗f(y)|r dy . t−

d
2 ‖M∗f‖r

Hr . t−
d
2 ‖f‖r

Hr ,

from which, we infer
‖eνt∆f‖L∞x . t−

d
2r ‖f‖Hr . (2.1)

On the other hand, we deduce from the definition of Hr(Rd) that

‖eνt∆f‖Hr
x
≤ sup

t>0
‖eνt∆f‖Hr

x
≤ ‖f‖Hr . (2.2)


