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Abstract We study the asymptotic behavior of global classical solutions to a kind
of mixed initial-boundary value problem for quasilinear hyperbolic systems. Based on
the existence results on the global classical solutions given by Li and Wang in [1] and
employing the method of Kong and Yang in [2], we prove that, when t tends to infinity,
the solution approaches a combination of C1 travelling wave solutions at the algebraic
rate (1 + t)−µ, provided that the initial data decay at the rate (1 + x)−(1+µ) as x tends
to +∞ and the boundary data decay at the rate (1 + t)−(1+µ) as t tends to +∞, where
µ is a positive constant.
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1. Introduction and Main Result

Consider the following first order quasilinear hyperbolic system

∂u

∂t
+ A(u)

∂u

∂x
= 0, (1.1)

where u = (u1, · · · , un)T is the unknown vector function of (t, x) and A(u) is an n× n

matrix with suitably smooth elements aij(u)(i, j = 1, · · · , n).
By the definition of hyperbolicity , for any given u on the domain under consider-

ation, Aij(u) has n real eigenvalues, λ1(u), · · · , λn(u) and a complete set of left (resp.
right) eigenvectors. For i = 1, · · · , n, let li(u) = (li1(u), · · · , lin(u)) (resp.ri(u) =
(ri1(u), · · · , rin(u))T ) be a left (resp. right) eigenvector corresponding to λi(u) :

li(u)A(u) = λi(u)li(u), (1.2)

and
A(u)ri(u) = λi(u)ri(u). (1.3)
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We have
det|lij(u)| 6= 0 (resp. det|rij(u)| 6= 0). (1.4)

Without loss of generality, we suppose that on the domain under consideration

li(u)rj(u) = δij (i, j = 1, · · · , n), (1.5)

where δij stands for the Kronecker’s symbol .
We suppose that all λi(u), lij(u), rij(u) (i, j = 1, · · · , n) have the same regularity as

aij(u)(i, j = 1, · · · , n).
In this paper, we suppose that the eigenvalues satisfy

λ1(0), · · · , λm(0) < 0 < λm+1(0) < · · · < λn(0). (1.6)

On the domain
D = {(t, x) | t ≥ 0, x ≥ 0}, (1.7)

we consider the mixed initial-boundary value problem for the system (1.1) with the
initial condition

t = 0 : u = ϕ(x) (x ≥ 0), (1.8)

and the boundary condition

x = 0 : vs = fs(α(t), v1, · · · , vm) + hs(t) (s = m + 1, · · · , n), (1.9)

in which
vi(u) = li(u)u (i,= 1, · · · , n), (1.10)

and
α(t) = (α1(t), · · · , αk(t)). (1.11)

Without loss of generality, we suppose that

fs(α(t), 0, · · · , 0) ≡ 0 (s = m + 1, · · · , n). (1.12)

Remark 1.1 : In a neighborhood of u = 0, the boundary condition (1.9) takes the same
form under any possibly different choice of the left eigenvectors.(see [1])

For the Cauchy problem, the following result was proved by Kong and Yang in [2] :
Theorem A Under the assumptions of above, there exists a unique C1 vector-

valued function Φ(x) = (Φ1(x), · · · ,Φn(x))T such that in the normalized coordinates
( see Section 2.1 )

∣∣∣u(t, x)−
n∑

i=1

Φi(x− λi(0)t)ei

∣∣∣ ≤ Kθ2(1 + t)−µ, (1.13)

where K stands for a positive constant independent of (t, x) and θ, and λ1(0) < λ2(0) <

· · · < λn(0).


