HYPERBOLIC-PARABOLIC CHEMOTAXIS SYSTEM WITH NONLINEAR PRODUCT TERMS*

Chen Hua and Wu Shaohua (School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China) (Email: chenhua@whu.edu.cn) Dedicated to the 70th birthday of Professor Li Tatsien (Received July. 25, 2007)

Abstract We prove the local existence and uniqueness of week solution of the hyperbolic-parabolic Chemotaxis system with some nonlinear product terms. For one dimensional case, we prove also the global existence and uniqueness of the solution for the problem.

Key Words Hyperbolic-parabolic system; Chemotaxis; external signal.
2000 MR Subject Classification 35K50, 35M10, 35R25, 92C45.
Chinese Library Classification 0175.29.

1. Introduction

Let u(x,t) and v(x,t) represent the population of an organism and an external signal at place $x \in \Omega \subset \mathbb{R}^N$ and time t respectively, in general speaking, the external signal is produced by the individuals and decays, which is described by a nonlinear function g(v, u). Under the spatial spread of the external signal is driven by diffusion, the full system for u and v reads (see [1-3])

$$u_t = \nabla (d\nabla u - \chi(v)\nabla v \cdot u), \tag{1}$$

$$v_t = d\Delta v + g(v, u). \tag{2}$$

In the case of that the external stimulus were based on the light (or the electromagnetic wave), H. Chen and S. Wu [4] studied following hyperbolic-parabolic type chemotaxis system:

$$u_t = \nabla (d\nabla u - \chi(v)\nabla v \cdot u), \tag{3}$$

$$v_{tt} = d\Delta v + g(v, u), \tag{4}$$

^{*}Research supported by NSFC (No.10631020).

Chen Hua and Wu Sha	hua Vol.21
---------------------	------------

where v represents the potential function of the external signal, for example, if the external signal is the electromagnetic field, then v would be voltage (in this case ∇v denotes the electromagnetic field).

The result of [4] gives the existence and uniqueness of the solution for the system (3)-(4) with Neumann boundary value condition on a smoothly bounded open domain Ω and g(v, u) = -v + f(u). In this paper, we shall study the case for more general nonlinear term g(v, u).

Throughout this article, we assume that we can choose a constant σ , satisfying

$$1 < \sigma < 2, \tag{5}$$

$$N < 2\sigma < N + 2,\tag{6}$$

$$\sigma - 1 \ge \frac{N}{4},\tag{7}$$

where $1 \leq N \leq 3$ are space dimensions.

It is easy to check that there exists some constant σ such that the three conditions above can be simultaneously satisfied in the cases of $1 \le N \le 3$. In fact, we can choose $\sigma = \frac{5}{4}$ for N = 1, $\sigma = \frac{13}{8}$ for N = 2 and $\sigma = \frac{15}{8}$ for N = 3.

Next, we define

$$\begin{aligned} X_{t_0} &= C([0, t_0], H^{\sigma}(\Omega) \cap \{\frac{\partial u}{\partial n} = 0 \ on \ \partial\Omega\}), \\ X_{\infty} &= C([0, +\infty), H^{\sigma}(\Omega) \cap \{\frac{\partial u}{\partial n} = 0 \ on \ \partial\Omega\}), \\ Y_{t_0} &= C([0, t_0], H^2(\Omega) \cap \{\frac{\partial v}{\partial n} = 0 \ on \ \partial\Omega\}) \cap C^1([0, t_0], H^1(\Omega)), \\ Y_{\infty} &= C([0, +\infty), H^2(\Omega) \cap \{\frac{\partial v}{\partial n} = 0 \ on \ \partial\Omega\}) \cap C^1([0, +\infty), H^1(\Omega)), \end{aligned}$$

and

$$\begin{aligned} Z_{t_0} &= C^1([0, t_0], L^2(\Omega)), \qquad Z_\infty = C^1([0, \infty), L^2(\Omega))), \\ W_{t_0} &= C^2([0, t_0], L^2(\Omega)), \qquad W_\infty = C^2([0, \infty), L^2(\Omega)). \end{aligned}$$

2. Local Existence and Uniqueness for $g(u, v) = \alpha uv$

In this section we consider following system in which the nonlinear function g(u, v) is a product term:

$$\begin{cases} u_t = \nabla(\nabla u - \chi u \nabla v), & \text{in } \Omega \times (0, T), \\ v_{tt} = \Delta v + \alpha u v, & \text{in } \Omega \times (0, T), \\ \frac{\partial u}{\partial n} = \frac{\partial v}{\partial n} = 0, & \text{on } \partial \Omega \times (0, T), \\ u(0, \cdot) = u_0, \quad v(0, \cdot) = \varphi, \quad v_t(0, \cdot) = \psi, & \text{in } \Omega, \end{cases}$$

$$(8)$$