Nonexistence of Blow-Up Flows for Symplectic and Lagrangian Mean Curvature Flows

YANG Liuqing*

Academy of Mathematics and Systems Sciences, Chinese Academy of Sciences, Beijing 100190, China.

Received 25 July 2011; Accepted 1 February 2012

Abstract. In this paper we mainly study the relation between $|A|^2$, $|H|^2$ and $\cos\alpha$ (α is the Kähler angle) of the blow up flow around the type II singularities of a symplectic mean curvature flow. We also study similar property of an almost calibrated Lagrangian mean curvature flow. We show the nonexistence of type II blow-up flows for a symplectic mean curvature flow satisfying $|A|^2 \le \lambda |H|^2$ and $\cos\alpha \ge \delta > 1 - \frac{1}{2\lambda}$ ($\frac{1}{2} \le \lambda \le 2$), or for an almost calibrated Lagrangian mean curvature flow satisfying $|A|^2 \le \lambda |H|^2$ and $\cos\theta \ge \delta > \max\{0,1-\frac{1}{\lambda}\}$ ($\frac{3}{4} \le \lambda \le 2$), where θ is the Lagrangian angle.

AMS Subject Classifications: 53C44, 53C21

Chinese Library Classifications: O186.12, O175.26

Key Words: Symplectic surface; Lagrangian surface; mean curvature flow.

1 Introduction

Suppose that M is a compact Kähler surface, and Σ is an oriented closed surface smoothly immersed in M. Let ω be the Kähler form on M. The Kähler angle [1] α is defined by

$$\omega|_{\Sigma} = \cos\alpha d\mu_{\Sigma},\tag{1.1}$$

where $d\mu_{\Sigma}$ is the area element of Σ of the induced metric from M. We say that Σ is a holomorphic curve if $\cos \alpha \equiv 1$, Σ is a Lagrangian surface if $\cos \alpha \equiv 0$ and Σ is a symplectic surface if $\cos \alpha > 0$.

There are many results on symplectic mean curvature flows.

It is proved in [2] that if the scalar curvature of the Kähler-Einstein surface is positive and the initial surface is sufficiently close to a holomorphic curve, the mean curvature flow has a global solution and it converges to a holomorphic curve.

^{*}Corresponding author. Email address: yangliuqing@amss.ac.cn (L. Yang)

In general, the mean curvature flow may develop singularities as time evolves. Chen-Li [3] and Wang [4] proved the nonexistence of type I singularities along the symplectic mean curvature flow. However, there may have type II singularities.

One of the most important examples of type II singularity is the translating soliton (c.f. [5,6]). Han-Li [7] and Han-Sun [8] cleared out the translating solitons to the symplectic mean curvature flow under certain conditions. In [9], Han-Li-Sun showed the nonexistence of type II blow-up flow of a symplectic mean curvature flow which is normal flat.

Suppose that M is a compact Calabi-Yau complex surface with a Kähler form ω , a complex structure J and a parallel holomorphic (2,0) form Ω . Let Σ be a Lagrangian surface in M, we have (see [10])

$$\Omega|_{\Sigma}=e^{i\theta}d\mu_{\Sigma},$$

where θ is a multivalued function and is well-defined up to an additive constant $2k\pi$, $k \in \mathbb{Z}$. We call θ the Lagrangian angle. We say Σ is spectial if $\theta \equiv \text{constant}$, and Σ is almost calibrated if $\cos \theta > 0$.

The almost calibrated Lagrangian mean curvature flows share many properties with the symplectic mean curvature flow (c.f. [11–17]).

In this paper, we mainly study the relation between $|A|^2$, $|H|^2$ and $\cos \alpha$ of the blow up flow around the type II singularities. We consider a general mean curvature flow Σ_t in \mathbb{R}^4 which exists globally with bounded second fundamental forms and the following property:

$$\mu_t(\Sigma_t \cap B_R(0)) \le CR^2, \tag{1.2}$$

where $0 < C < \infty$ is a constant independent of t and R.

We follow some ideas in [9] to prove the non-existence of type II blow-up flows for a symplectic mean curvature flow which satisfies

$$|A|^2 \le \lambda |H|^2 \tag{1.3}$$

and $\cos \alpha \ge \delta > 1 - \frac{1}{2\lambda}$ (1/2 $\le \lambda \le 2$). Analogously we have a corresponding result for the almost calibrated Lagrangian mean curvature flow. The main theorems are as follows.

Theorem 1.1. Suppose that Σ_t , $t \in (-\infty,0]$ is a complete symplectic mean curvature flow with

$$\cos\alpha \ge \delta > 1 - \frac{1}{2\lambda} \quad (1/2 \le \lambda \le 2) \tag{1.4}$$

in \mathbb{C}^2 which satisfies (1.2). If

$$\sup_{t \in (-\infty,0]} \sup_{\Sigma_t} |A|^2 = 1, \tag{1.5}$$

then there exist x_0 , t_0 such that

$$|A|^2(x_0,t_0) > \lambda |H|^2(x_0,t_0).$$
 (1.6)