On a Class of Neumann Boundary Value Equations Driven by a $\left(p_{1}, \cdots, p_{n}\right)$-Laplacian Operator

AFROUZI G. A. ${ }^{1, *}$, HEIDARKHANI S. ${ }^{2}$, HADJIAN A. ${ }^{1}$ and SHAKERI S. ${ }^{1}$
${ }^{1}$ Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran.
${ }^{2}$ Department of Mathematics, Faculty of Sciences, Razi University, Kermanshah 67149, Iran.

Received 31 March 2011; Accepted 12 December 2011

Abstract

In this paper we prove the existence of an open interval ($\lambda^{\prime}, \lambda^{\prime \prime}$) for each λ in the interval a class of Neumann boundary value equations involving the (p_{1}, \ldots, p_{n})Laplacian and depending on λ admits at least three solutions. Our main tool is a recent three critical points theorem of Averna and Bonanno [Topol. Methods Nonlinear Anal. [1] (2003) 93-103].

AMS Subject Classifications: 35J65, 34A15
Chinese Library Classifications: O175.25, O175.8
Key Words: $\left(p_{1}, \ldots, p_{n}\right)$-Laplacian; Neumann problem; three solutions; critical points; multiplicity results.

1 Introduction

Here and in what follows, $\Omega \subset \mathbb{R}^{N}(N \geq 1)$ is a non-empty bounded open set with a boundary $\partial \Omega$ of class $C^{1}, p_{i}>N$ for $1 \leq i \leq n$ and λ is a positive parameter.

Let us consider the following quasilinear elliptic system

$$
\begin{cases}\Delta_{p_{1}} u_{1}+\lambda F_{u_{1}}\left(x, u_{1}, \cdots, u_{n}\right)=a_{1}(x)\left|u_{1}\right|^{p_{1}-2} u_{1} & \text { in } \Omega \tag{1.1}\\ \Delta_{p_{2}} u_{2}+\lambda F_{u_{2}}\left(x, u_{1}, \cdots, u_{n}\right)=a_{2}(x)\left|u_{2}\right|^{p_{2}-2} u_{2} & \text { in } \Omega \\ \vdots & \\ \Delta_{p_{n}} u_{n}+\lambda F_{u_{n}}\left(x, u_{1}, \cdots, u_{n}\right)=a_{n}(x)\left|u_{n}\right|^{p_{n}-2} u_{n} & \text { in } \Omega \\ \frac{\partial u_{i}}{\partial v}=0 \text { for } 1 \leq i \leq n & \text { on } \partial \Omega\end{cases}
$$

[^0] (A. Hadjian), s.shakeri@umz.ac.ir (S. Shakeri), s.heidarkhani@razi.ac.ir (S. Heidarkhani)
where $\Delta_{p_{i}} u_{i}:=\operatorname{div}\left(\left|\nabla u_{i}\right|^{p_{i}-2} \nabla u_{i}\right)$ is the p_{i}-Laplacian operator and v is the outer unit normal to $\partial \Omega$. Here, $F: \Omega \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a function such that the mapping $\left(t_{1}, t_{2}, \cdots, t_{n}\right) \rightarrow$ $F\left(x, t_{1}, t_{2}, \cdots, t_{n}\right)$ is measurable in Ω for all $\left(t_{1}, \cdots, t_{n}\right) \in \mathbb{R}^{n}$ and is C^{1} in \mathbb{R}^{n} for almost every $x \in \Omega$ satisfying the condition
$$
\sup _{\sum_{i=1}^{n}\left|t_{i}\right|^{p_{i} / p_{i} \leq \varrho}}\left|F\left(\cdot, t_{1}, \cdots, t_{n}\right)\right| \in L^{1}(\Omega)
$$
for every $\varrho>0, F_{u_{i}}$ denotes the partial derivative of F with respect to u_{i}, and $a_{i} \in L^{\infty}(\Omega)$ with $\operatorname{essinf}_{\Omega} a_{i} \geq 0$ for $1 \leq i \leq n$.

Throughout this paper, we let X be the Cartesian product of n spaces $W^{1, p_{i}}(\Omega)$ for $1 \leq i \leq n$, i.e., $X=W^{1, p_{1}}(\Omega) \times W^{1, p_{2}}(\Omega) \times \cdots \times W^{1, p_{n}}(\Omega)$ equipped with the norm

$$
\left\|\left(u_{1}, u_{2}, \cdots, u_{n}\right)\right\|:=\left\|u_{1}\right\|+\left\|u_{2}\right\|+\cdots+\left\|u_{n}\right\|,
$$

where

$$
\left\|u_{i}\right\|:=\left(\int_{\Omega}\left|\nabla u_{i}(x)\right|^{p_{i}} \mathrm{~d} x+\int_{\Omega} a_{i}(x)\left|u_{i}(x)\right|^{p_{i}} \mathrm{~d} x\right)^{\frac{1}{p_{i}}}
$$

for $1 \leq i \leq n$, which is equivalent to the usual one.
Put

$$
\begin{equation*}
c:=\max \left\{\sup _{u_{i} \in W^{1}, p_{i}(\Omega) \backslash\{0\}} \frac{\max _{x \in \bar{\Omega}}\left|u_{i}(x)\right|^{p_{i}}}{\left\|u_{i}\right\|^{p_{i}}}: \text { for } 1 \leq i \leq n\right\} . \tag{1.2}
\end{equation*}
$$

Since $p_{i}>N$ for $1 \leq i \leq n, X$ is compactly embedded in $\left(C^{0}(\bar{\Omega})\right)^{n}$, so that $c<+\infty$. It follows from [2, Proposition 4.1] that

$$
\sup _{u_{i} \in W^{1, p_{i}}(\Omega) \backslash\{0\}} \frac{\max _{x \in \bar{\Omega}}\left|u_{i}(x)\right|^{p_{i}}}{\left\|u_{i}\right\|^{p_{i}}}>\frac{1}{\left\|a_{i}\right\|_{1}} \quad \text { for } 1 \leq i \leq n
$$

where $\left\|a_{i}\right\|_{1}:=\int_{\Omega}\left|a_{i}(x)\right| \mathrm{d} x$ for $1 \leq i \leq n$, and so $1 /\left\|a_{i}\right\|_{1} \leq c$ for $1 \leq i \leq n$. In addition, if Ω is convex, it is known [2] that

$$
\begin{aligned}
& \sup _{u_{i} \in W^{1, p_{i}}(\Omega) \backslash\{0\}} \frac{\max _{x \in \bar{\Omega}}\left|u_{i}(x)\right|}{\left\|u_{i}\right\|} \\
& \leq 2^{\frac{p_{i}-1}{p_{i}}} \max \left\{\left(\frac{1}{\left\|a_{i}\right\|_{1}}\right)^{\frac{1}{p_{i}}}, \frac{\operatorname{diam}(\Omega)}{N^{\frac{1}{p_{i}}}}\left(\frac{p_{i}-1}{p_{i}-N} m(\Omega)\right)^{\frac{p_{i}-1}{p_{i}}} \frac{\left\|a_{i}\right\|_{\infty}}{\left\|a_{i}\right\|_{1}}\right\}
\end{aligned}
$$

for $1 \leq i \leq n$, where $m(\Omega)$ is the Lebesgue measure of the set Ω, and equality occurs when Ω is a ball.

By a (weak) solution of the system (1.1), we mean any $u=\left(u_{1}, u_{2}, \cdots, u_{n}\right) \in X$ such that

$$
\begin{aligned}
& \int_{\Omega} \sum_{i=1}^{n}\left|\nabla u_{i}(x)\right|^{p_{i}-2} \nabla u_{i}(x) \nabla v_{i}(x) \mathrm{d} x \\
& \quad-\lambda \int_{\Omega} \sum_{i=1}^{n} F_{u_{i}}\left(x, u_{1}(x), \cdots, u_{n}(x)\right) v_{i}(x) \mathrm{d} x+\int_{\Omega} \sum_{i=1}^{n} a_{i}(x)\left|u_{i}(x)\right|^{p_{i}-2} u_{i}(x) v_{i}(x) \mathrm{d} x=0
\end{aligned}
$$

[^0]: *Corresponding author. Email addresses: afrouzi@umz.ac.ir (G. A. Afrouzi), a.hadjian@umz.ac.ir

