On a Class of Neumann Boundary Value Equations Driven by a (p_1, \dots, p_n) -Laplacian Operator

AFROUZI G. A.^{1,*}, HEIDARKHANI S.², HADJIAN A.¹ and SHAKERI S.¹

 ¹ Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran.
 ² Department of Mathematics, Faculty of Sciences, Razi University, Kermanshah 67149, Iran.
 Received 31 March 2011; Accepted 12 December 2011

Abstract. In this paper we prove the existence of an open interval (λ', λ'') for each λ in the interval a class of Neumann boundary value equations involving the $(p_1, ..., p_n)$ -Laplacian and depending on λ admits at least three solutions. Our main tool is a recent three critical points theorem of Averna and Bonanno [Topol. Methods Nonlinear Anal. [1] (2003) 93-103].

AMS Subject Classifications: 35J65, 34A15

Chinese Library Classifications: O175.25, O175.8

Key Words: $(p_1,...,p_n)$ -Laplacian; Neumann problem; three solutions; critical points; multiplicity results.

1 Introduction

Here and in what follows, $\Omega \subset \mathbb{R}^N(N \ge 1)$ is a non-empty bounded open set with a boundary $\partial \Omega$ of class C^1 , $p_i > N$ for $1 \le i \le n$ and λ is a positive parameter.

Let us consider the following quasilinear elliptic system

http://www.global-sci.org/jpde/

^{*}Corresponding author. *Email addresses:* afrouzi@umz.ac.ir (G. A. Afrouzi), a.hadjian@umz.ac.ir (A. Hadjian), s.shakeri@umz.ac.ir (S. Shakeri), s.heidarkhani@razi.ac.ir (S. Heidarkhani)

where $\Delta_{p_i} u_i := \operatorname{div}(|\nabla u_i|^{p_i-2}\nabla u_i)$ is the p_i -Laplacian operator and ν is the outer unit normal to $\partial\Omega$. Here, $F: \Omega \times \mathbb{R}^n \to \mathbb{R}$ is a function such that the mapping $(t_1, t_2, \dots, t_n) \to F(x, t_1, t_2, \dots, t_n)$ is measurable in Ω for all $(t_1, \dots, t_n) \in \mathbb{R}^n$ and is C^1 in \mathbb{R}^n for almost every $x \in \Omega$ satisfying the condition

$$\sup_{\sum_{i=1}^{n}|t_i|^{p_i}/p_i\leq\varrho}|F(\cdot,t_1,\cdots,t_n)|\in L^1(\Omega)$$

for every $\rho > 0$, F_{u_i} denotes the partial derivative of F with respect to u_i , and $a_i \in L^{\infty}(\Omega)$ with essinf_{Ω} $a_i \ge 0$ for $1 \le i \le n$.

Throughout this paper, we let *X* be the Cartesian product of *n* spaces $W^{1,p_i}(\Omega)$ for $1 \le i \le n$, i.e., $X = W^{1,p_1}(\Omega) \times W^{1,p_2}(\Omega) \times \cdots \times W^{1,p_n}(\Omega)$ equipped with the norm

$$||(u_1, u_2, \cdots, u_n)|| := ||u_1|| + ||u_2|| + \cdots + ||u_n||$$

where

$$|u_i|| := \left(\int_{\Omega} |\nabla u_i(x)|^{p_i} \mathrm{d}x + \int_{\Omega} a_i(x) |u_i(x)|^{p_i} \mathrm{d}x\right)^{\frac{1}{p_i}}$$

for $1 \le i \le n$, which is equivalent to the usual one.

Put

$$c := \max\left\{\sup_{u_i \in W^{1,p_i}(\Omega) \setminus \{0\}} \frac{\max_{x \in \overline{\Omega}} |u_i(x)|^{p_i}}{\|u_i\|^{p_i}} : \text{ for } 1 \le i \le n\right\}.$$
(1.2)

Since $p_i > N$ for $1 \le i \le n$, *X* is compactly embedded in $(C^0(\overline{\Omega}))^n$, so that $c < +\infty$. It follows from [2, Proposition 4.1] that

$$\sup_{u_i \in W^{1,p_i}(\Omega) \setminus \{0\}} \frac{\max_{x \in \overline{\Omega}} |u_i(x)|^{p_i}}{\|u_i\|^{p_i}} > \frac{1}{\|a_i\|_1} \quad \text{for } 1 \le i \le n,$$

where $||a_i||_1 := \int_{\Omega} |a_i(x)| dx$ for $1 \le i \le n$, and so $1/||a_i||_1 \le c$ for $1 \le i \le n$. In addition, if Ω is convex, it is known [2] that

$$\sup_{\substack{u_i \in W^{1,p_i}(\Omega) \setminus \{0\}}} \frac{\max_{x \in \overline{\Omega}} |u_i(x)|}{\|u_i\|} \\ \leq 2^{\frac{p_i - 1}{p_i}} \max\left\{ \left(\frac{1}{\|a_i\|_1}\right)^{\frac{1}{p_i}}, \frac{\operatorname{diam}(\Omega)}{N^{\frac{1}{p_i}}} \left(\frac{p_i - 1}{p_i - N} m(\Omega)\right)^{\frac{p_i - 1}{p_i}} \frac{\|a_i\|_{\infty}}{\|a_i\|_1} \right\}$$

for $1 \le i \le n$, where $m(\Omega)$ is the Lebesgue measure of the set Ω , and equality occurs when Ω is a ball.

By a (weak) solution of the system (1.1), we mean any $u = (u_1, u_2, \dots, u_n) \in X$ such that

$$\int_{\Omega} \sum_{i=1}^{n} |\nabla u_i(x)|^{p_i - 2} \nabla u_i(x) \nabla v_i(x) dx$$

- $\lambda \int_{\Omega} \sum_{i=1}^{n} F_{u_i}(x, u_1(x), \cdots, u_n(x)) v_i(x) dx + \int_{\Omega} \sum_{i=1}^{n} a_i(x) |u_i(x)|^{p_i - 2} u_i(x) v_i(x) dx = 0$