A New Proof of Subcritical Trudinger-Moser Inequalities on the Whole Euclidean Space

YANG Yunyan* and ZHU Xiaobao

Department of Mathematics, Renmin University of China, Beijing 100872, China.

Received 10 October 2012; Accepted 20 April 2013

Abstract. In this note, we give a new proof of subcritical Trudinger-Moser inequality on \mathbb{R}^n . All the existing proofs on this inequality are based on the rearrangement argument with respect to functions in the Sobolev space $W^{1,n}(\mathbb{R}^n)$. Our method avoids this technique and thus can be used in the Riemannian manifold case and in the entire Heisenberg group.

AMS Subject Classifications: 46E30

Chinese Library Classifications: O178

Key Words: Trudinger-Moser inequality; Adams inequality.

1 Introduction

It was proved by Cao [1], Panda [2] and do Ó [3] that

Theorem 1.1. Let $\alpha_n = n\omega_{n-1}^{\frac{1}{n-1}}$, where ω_{n-1} is the measure of the unit sphere in \mathbb{R}^n . Then for any $\alpha < \alpha_n$ there holds

$$\sup_{u \in W^{1,n}(\mathbb{R}^n), \int_{\mathbb{R}^n} (|\nabla u|^n + |u|^n) dx \le 1} \int_{\mathbb{R}^n} \left(e^{\alpha |u|^{\frac{n}{n-1}}} - \sum_{k=0}^{n-2} \frac{\alpha^k |u|^{\frac{nk}{n-1}}}{k!} \right) dx < \infty.$$
(1.1)

This result has various extensions, among which we mention Adachi and Tanaka [4], Ruf [5], Li-Ruf [6], Adimurthi-Yang [7]. To the authors' knowledge, all the existing proofs of such an inequality are based on rearrangement argument with respect to functions in the Sobolev space $W^{1,n}(\mathbb{R}^n)$. The purpose of this short note is to provide a new method to reprove Theorem 1.1. Namely, we use a technique of the analogy of unity decomposition.

http://www.global-sci.org/jpde/

^{*}Corresponding author. *Email addresses:* yunyanyang@ruc.edu.cn (Y. Yang), zhuxiaobao@ruc.edu.cn (X. Zhu)

More precisely, for any $u \in W^{1,n}(\mathbb{R}^n)$, we first take a cut-off function $\phi_i \in C_0^{\infty}(B_R(x_i))$ such that $0 \le \phi_i \le 1$ on $B_R(x_i)$, $\phi_i \equiv 1$ on $B_{R/2}(x_i)$. Then, using the usual Trudinger-Moser inequality [11–13] for bounded domain, we prove a key estimate

$$\int_{\mathbb{R}^n} \left(e^{\alpha |\phi_i u|^{\frac{n}{n-1}}} - \sum_{k=0}^{n-2} \frac{\alpha^k |\phi_i u|^{\frac{nk}{n-1}}}{k!} \right) \mathrm{d}x \le C(n) R^n \int_{\mathbb{R}^n} |\nabla(\phi_i u)|^n \mathrm{d}x \tag{1.2}$$

under the condition that

$$\int_{\mathbb{R}^n} |\nabla(\phi_i u)|^n \mathrm{d}x \leq 1,$$

where C(n) is a constant depending only on n. The power of (1.2) is evident. It permits us to approximate u by $\sum_i \phi_i u$, where every ϕ_i is supported in $B_R(x_i)$, $\mathbb{R}^n = \bigcup_{i=1}^{\infty} B_{R/2}(x_i)$, and any fixed $x \in \mathbb{R}^n$ belongs to at most c(n) balls $B_R(x_i)$ for some universal constant c(n). If we further take ϕ_i such that $|\nabla \phi_i| \le 4/R$. Note that for any $\epsilon > 0$ there exists a constant $C(\epsilon)$ such that

$$\int_{\mathbb{R}^n} |\nabla(\phi_i u)|^n \mathrm{d}x \leq (1+\epsilon) \int_{\mathbb{R}^n} |\nabla u|^n \mathrm{d}x + \frac{C(\epsilon)}{R^n} \int_{\mathbb{R}^n} |u|^n \mathrm{d}x.$$

Selecting $\epsilon > 0$ sufficiently small and R > 0 sufficiently large, we get the desired result.

Similar idea was used by the first named author to deal with similar problems on complete Riemannian manifolds [8] or the entire Heisenberg group [9]. Note that due to the complicated geometric structure, we have not obtained Theorem 1.1 on manifolds, but a weaker result. Namely

Theorem 1.2. Let (M,g) be a complete noncompact Riemannian n-manifold. Suppose that its Ricci curvature has lower bound, namely $\operatorname{Rc}_{(M,g)} \ge Kg$ for some constant $K \in \mathbb{R}$, and its injectivity radius is strictly positive, namely $\operatorname{inj}_{(M,g)} \ge i_0$ for some constant $i_0 > 0$. Then we have:

(i) For any $0 \le \alpha < \alpha_n$ there exists positive constants τ and β depending only on n, α , K and i_0 such that

$$\sup_{u \in W^{1,n}(M), \|u\|_{1,\tau} \le 1} \int_M \left(e^{\alpha |u|^{\frac{n}{n-1}}} - \sum_{k=0}^{n-2} \frac{\alpha^k |u|^{\frac{nk}{n-1}}}{k!} \right) \mathrm{d}v_g \le \beta, \tag{1.3}$$

where

$$\|u\|_{1,\tau} = \left(\int_{M} |\nabla_{g} u|^{n} \mathrm{d}v_{g}\right)^{1/n} + \tau \left(\int_{M} |u|^{n} \mathrm{d}v_{g}\right)^{1/n}.$$
(1.4)

As a consequence, $W^{1,n}(M)$ is embedded in $L^q(M)$ continuously for all $q \ge n$.

(ii) For any $\alpha > \alpha_n$ and any $\tau > 0$, the supremum in (1.3) is infinite.

(iii) For any $u \in W^{1,n}(M)$ and any $\alpha > 0$, the integrals in (1.3) are still finite.

We say more words about this method. For Sobolev inequalities on complete noncompact Riemannian manifolds, unity decomposition was employed by Hebey et al. [10]. In the case of Trudinger-Moser inequality, it is not evidently applicable. We are lucky to find its analogy [8, Lemma 4.1].