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Abstract. In this note, we give a new proof of subcritical Trudinger-Moser inequality
on R

n. All the existing proofs on this inequality are based on the rearrangement ar-
gument with respect to functions in the Sobolev space W1,n(Rn). Our method avoids
this technique and thus can be used in the Riemannian manifold case and in the entire
Heisenberg group.

AMS Subject Classifications: 46E30

Chinese Library Classifications: O178

Key Words: Trudinger-Moser inequality; Adams inequality.

1 Introduction

It was proved by Cao [1], Panda [2] and do Ó [3] that

Theorem 1.1. Let αn = nω
1

n−1

n−1, where ωn−1 is the measure of the unit sphere in R
n. Then for

any α<αn there holds

sup
u∈W1,n(Rn),

∫
Rn (|∇ u|n+|u|n)dx≤1

∫

Rn

(
eα|u|

n
n−1

−
n−2

∑
k=0

αk|u|
nk

n−1

k!

)
dx<∞. (1.1)

This result has various extensions, among which we mention Adachi and Tanaka [4],
Ruf [5], Li-Ruf [6], Adimurthi-Yang [7]. To the authors’ knowledge, all the existing proofs
of such an inequality are based on rearrangement argument with respect to functions in
the Sobolev space W1,n(Rn). The purpose of this short note is to provide a new method to
reprove Theorem 1.1. Namely, we use a technique of the analogy of unity decomposition.
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More precisely, for any u∈W1,n(Rn), we first take a cut-off function φi∈C∞
0 (BR(xi)) such

that 0 ≤ φi ≤ 1 on BR(xi), φi ≡ 1 on BR/2(xi). Then, using the usual Trudinger-Moser
inequality [11–13] for bounded domain, we prove a key estimate

∫

Rn

(
eα|φiu|

n
n−1

−
n−2

∑
k=0

αk|φiu|
nk

n−1

k!

)
dx≤C(n)Rn

∫

Rn
|∇(φiu)|

ndx (1.2)

under the condition that ∫

Rn
|∇(φiu)|

ndx≤1,

where C(n) is a constant depending only on n. The power of (1.2) is evident. It permits
us to approximate u by ∑i φiu, where every φi is supported in BR(xi), R

n =∪∞
i=1BR/2(xi),

and any fixed x∈R
n belongs to at most c(n) balls BR(xi) for some universal constant c(n).

If we further take φi such that |∇φi|≤4/R. Note that for any ǫ>0 there exists a constant
C(ǫ) such that

∫

Rn
|∇(φiu)|

ndx≤ (1+ǫ)
∫

Rn
|∇u|ndx+

C(ǫ)

Rn

∫

Rn
|u|ndx.

Selecting ǫ>0 sufficiently small and R>0 sufficiently large, we get the desired result.
Similar idea was used by the first named author to deal with similar problems on

complete Riemannian manifolds [8] or the entire Heisenberg group [9]. Note that due to
the complicated geometric structure, we have not obtained Theorem 1.1 on manifolds,
but a weaker result. Namely

Theorem 1.2. Let (M,g) be a complete noncompact Riemannian n-manifold. Suppose that its
Ricci curvature has lower bound, namely Rc(M,g)≥Kg for some constant K∈R, and its injectivity
radius is strictly positive, namely inj(M,g)≥ i0 for some constant i0 >0. Then we have:

(i) For any 0≤ α< αn there exists positive constants τ and β depending only on n, α, K and i0
such that

sup
u∈W1,n(M),‖u‖1,τ≤1

∫

M

(
eα|u|

n
n−1

−
n−2

∑
k=0

αk|u|
nk

n−1

k!

)
dvg ≤β, (1.3)

where

‖u‖1,τ =

(∫

M
|∇gu|ndvg

)1/n

+τ

(∫

M
|u|ndvg

)1/n

. (1.4)

As a consequence, W1,n(M) is embedded in Lq(M) continuously for all q≥n.

(ii) For any α>αn and any τ>0, the supremum in (1.3) is infinite.

(iii) For any u∈W1,n(M) and any α>0, the integrals in (1.3) are still finite.

We say more words about this method. For Sobolev inequalities on complete noncom-
pact Riemannian manifolds, unity decomposition was employed by Hebey et al. [10]. In
the case of Trudinger-Moser inequality, it is not evidently applicable. We are lucky to find
its analogy [8, Lemma 4.1].


