A New Proof of Subcritical Trudinger-Moser Inequalities on the Whole Euclidean Space

YANG Yunyan* and ZHU Xiaobao
Department of Mathematics, Renmin University of China, Beijing 100872, China.

Received 10 October 2012; Accepted 20 April 2013

Abstract

In this note, we give a new proof of subcritical Trudinger-Moser inequality on \mathbb{R}^{n}. All the existing proofs on this inequality are based on the rearrangement argument with respect to functions in the Sobolev space $W^{1, n}\left(\mathbb{R}^{n}\right)$. Our method avoids this technique and thus can be used in the Riemannian manifold case and in the entire Heisenberg group.

AMS Subject Classifications: 46E30
Chinese Library Classifications: O178
Key Words: Trudinger-Moser inequality; Adams inequality.

1 Introduction

It was proved by Cao [1], Panda [2] and do Ó [3] that
Theorem 1.1. Let $\alpha_{n}=n \omega_{n-1}^{\frac{1}{n-1}}$, where ω_{n-1} is the measure of the unit sphere in \mathbb{R}^{n}. Then for any $\alpha<\alpha_{n}$ there holds

This result has various extensions, among which we mention Adachi and Tanaka [4], Ruf [5], Li-Ruf [6], Adimurthi-Yang [7]. To the authors' knowledge, all the existing proofs of such an inequality are based on rearrangement argument with respect to functions in the Sobolev space $W^{1, n}\left(\mathbb{R}^{n}\right)$. The purpose of this short note is to provide a new method to reprove Theorem 1.1. Namely, we use a technique of the analogy of unity decomposition.

[^0]More precisely, for any $u \in W^{1, n}\left(\mathbb{R}^{n}\right)$, we first take a cut-off function $\phi_{i} \in C_{0}^{\infty}\left(B_{R}\left(x_{i}\right)\right)$ such that $0 \leq \phi_{i} \leq 1$ on $B_{R}\left(x_{i}\right), \phi_{i} \equiv 1$ on $B_{R / 2}\left(x_{i}\right)$. Then, using the usual Trudinger-Moser inequality [11-13] for bounded domain, we prove a key estimate

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}\left(e^{\alpha\left|\phi_{i} u\right|^{\frac{n}{n-1}}}-\sum_{k=0}^{n-2} \frac{\alpha^{k}\left|\phi_{i} u\right|^{\frac{n k}{n-1}}}{k!}\right) \mathrm{d} x \leq C(n) R^{n} \int_{\mathbb{R}^{n}}\left|\nabla\left(\phi_{i} u\right)\right|^{n} \mathrm{~d} x \tag{1.2}
\end{equation*}
$$

under the condition that

$$
\int_{\mathbb{R}^{n}}\left|\nabla\left(\phi_{i} u\right)\right|^{n} \mathrm{~d} x \leq 1
$$

where $C(n)$ is a constant depending only on n. The power of (1.2) is evident. It permits us to approximate u by $\sum_{i} \phi_{i} u$, where every ϕ_{i} is supported in $B_{R}\left(x_{i}\right), \mathbb{R}^{n}=\cup_{i=1}^{\infty} B_{R / 2}\left(x_{i}\right)$, and any fixed $x \in \mathbb{R}^{n}$ belongs to at most $c(n)$ balls $B_{R}\left(x_{i}\right)$ for some universal constant $c(n)$. If we further take ϕ_{i} such that $\left|\nabla \phi_{i}\right| \leq 4 / R$. Note that for any $\epsilon>0$ there exists a constant $C(\epsilon)$ such that

$$
\int_{\mathbb{R}^{n}}\left|\nabla\left(\phi_{i} u\right)\right|^{n} \mathrm{~d} x \leq(1+\epsilon) \int_{\mathbb{R}^{n}}|\nabla u|^{n} \mathrm{~d} x+\frac{C(\epsilon)}{R^{n}} \int_{\mathbb{R}^{n}}|u|^{n} \mathrm{~d} x
$$

Selecting $\epsilon>0$ sufficiently small and $R>0$ sufficiently large, we get the desired result.
Similar idea was used by the first named author to deal with similar problems on complete Riemannian manifolds [8] or the entire Heisenberg group [9]. Note that due to the complicated geometric structure, we have not obtained Theorem 1.1 on manifolds, but a weaker result. Namely

Theorem 1.2. Let (M, g) be a complete noncompact Riemannian n-manifold. Suppose that its Ricci curvature has lower bound, namely $\operatorname{Rc}_{(M, g)} \geq K g$ for some constant $K \in \mathbb{R}$, and its injectivity radius is strictly positive, namely $\operatorname{inj}_{(M, g)} \geq i_{0}$ for some constant $i_{0}>0$. Then we have:
(i) For any $0 \leq \alpha<\alpha_{n}$ there exists positive constants τ and β depending only on n, α, K and i_{0} such that
where

$$
\begin{equation*}
\|u\|_{1, \tau}=\left(\int_{M}\left|\nabla_{g} u\right|^{n} \mathrm{~d} v_{g}\right)^{1 / n}+\tau\left(\int_{M}|u|^{n} \mathrm{~d} v_{g}\right)^{1 / n} \tag{1.4}
\end{equation*}
$$

As a consequence, $W^{1, n}(M)$ is embedded in $L^{q}(M)$ continuously for all $q \geq n$.
(ii) For any $\alpha>\alpha_{n}$ and any $\tau>0$, the supremum in (1.3) is infinite.
(iii) For any $u \in W^{1, n}(M)$ and any $\alpha>0$, the integrals in (1.3) are still finite.

We say more words about this method. For Sobolev inequalities on complete noncompact Riemannian manifolds, unity decomposition was employed by Hebey et al. [10]. In the case of Trudinger-Moser inequality, it is not evidently applicable. We are lucky to find its analogy [8, Lemma 4.1].

[^0]: *Corresponding author. Email addresses: yunyanyang@ruc.edu.cn (Y. Yang), zhuxiaobao@ruc.edu.cn (X. Zhu)

