Multiple Positive Solutions for Semilinear Elliptic Equations Involving Subcritical Nonlinearities in $\mathbb{R}^{\mathbb{N}}$

KHADEMLOO Somayeh* and MOHSENHI Rahelh

Department of Basic Sciences, Babol Noushirvani University of Technology, Babol, Iran.

Received 30 May 2013; Accepted 22 November 2013

Abstract. In this paper, we study how the shape of the graph of a(z) affects on the number of positive solutions of

$$-\Delta v + \mu b(z)v = a(z)v^{p-1} + \lambda h(z)v^{q-1}, \quad \text{in } \mathbb{R}^N.$$

$$(0.1)$$

We prove for large enough $\lambda, \mu > 0$, there exist at least k+1 positive solutions of the this semilinear elliptic equations where $1 \le q < 2 < p < 2^* = 2N/(N-2)$ for $N \ge 3$.

AMS Subject Classifications: 35J20, 35J25, 35J65

Chinese Library Classifications: O175.8, O175.25

Key Words: Sobolev spaces; semilinear elliptic equations; critical exponent; Nehari manifold; Palais-Smale condition.

1 Introduction

For $N \ge 3$, $1 \le q < 2 < p < 2^* = 2N/(N-2)$, we suppose the semilinear elliptic equations

$$\begin{cases} -\Delta v + \mu b(z)v = a(z)v^{p-1} + \lambda h(z)v^{q-1}, & \text{ in } \mathbb{R}^N; \\ v \in H^1(\mathbb{R}^N), \end{cases}$$
(E_{\lambda,\mu)}

where $\lambda, \mu > 0$. Suppose *a*, *b* and *h* satisfy the following conditions:

(*a*₁) *a* is a positive continuous function in \mathbb{R}^N and $\lim_{|z|\to\infty} a(z) = a_{\infty} > 0$.

(*a*₂) There are *k* points a^1, a^2, \dots, a^k in \mathbb{R}^N such that $a(a^i) = a_{\max} = \max_{z \in \mathbb{R}^N} a(z)$; for $1 \le i \le k$ and $a_{\infty} < a_{\max}$.

http://www.global-sci.org/jpde/

^{*}Corresponding author. *Email addresses:* s.khademloo@nit.ac.ir (S. Khademloo), rm_omran78@yahoo.com (R. Mohsenhi)

Multiple Positive Solutions for Semilinear Elliptic Equations

 $(h_1) h \in L^{\frac{p}{p-q}}(\mathbb{R}^{\mathbb{N}}) \cap L^{\infty}(\mathbb{R}^{\mathbb{N}}) \text{ and } h \geqq 0.$

 (b_1) *b* is a bounded and positive continuous function in \mathbb{R}^N .

For $\mu = 1$, $\lambda = 0$, a(z) = b(z) = 1 for all $z \in \mathbb{R}^N$, we assume the semilinear elliptic equation

$$\begin{cases} -\Delta u + u = u^{p-1}, & \text{ in } \mathbb{R}^{\mathbb{N}}; \\ u \in H^1(\mathbb{R}^N), \end{cases}$$
(E₀)

where

$$\|u\|_{H}^{2} = \int_{\mathbb{R}^{N}} (|\nabla u|^{2} + u^{2}) dz$$
 is the norm in $H^{1}(\mathbb{R}^{N})$,

and the energy functional

$$J_0^{\infty}(u) = \frac{1}{2} \| u \|_{H}^2 - \frac{1}{p} \| u_+ \|_{L^p}^p, \quad \text{where } u_+ = \max\{u, 0\} \ge 0.$$

We consider the semilinear elliptic equation

$$\begin{cases} -\Delta u + u = a(z)u^{p-1} + \lambda h(z)u^{q-1}, & \text{ in } \mathbb{R}^{\mathbb{N}}; \\ u \in H^1(\mathbb{R}^{\mathbb{N}}), \end{cases}$$

have been studied by Huei-li Lin [1] (b(z) = 1, $\mu = 1$ and for $N \ge 3$, $1 \le q < 2 < p < 2^* = 2N/(N-2)$) and she studied the effect of the coefficient a(z) of the subcritical nonlinearity in $\mathbb{R}^{\mathbb{N}}$, Ambrosetti [2] ($a \equiv 1$ and $1 < q < 2 < p \le 2^* = 2N/(N-2)$ and Wu [3] ($a \in C(\overline{\Omega})$ and changes sign, $1 < q < 2 < p < 2^*$). They showed that this equation has at least two positive solutions for small enough $\lambda > 0$. In [4], Hsu and Lin have studied that there are four positive solutions of the general cases

$$-\Delta v + v = a(z)v^{p-1} + \lambda h(z)v^{q-1}, \quad \text{in } \mathbb{R}^N;$$

for small enough $\lambda > 0$.

In this paper, we study the existence and multiplicity of positive solutions of the equation $(E_{\lambda,\mu})$ in $\mathbb{R}^{\mathbb{N}}$. By the change of variables

$$\mu = \frac{1}{\varepsilon^2}$$
 and $u(z) = \varepsilon^{\frac{2}{p-2}} v(\varepsilon z),$

Eq. $(E_{\lambda,\mu})$ is converted to

$$\begin{cases} -\Delta u + b(\varepsilon z)u = a(\varepsilon z)u^{p-1} + \lambda h(\varepsilon z)u^{q-1}, & \text{ in } \mathbb{R}^{\mathbb{N}}; \\ u \in H^1(\mathbb{R}^N). \end{cases}$$
(E_{\varepsilon,\lambda)}

Based on Eq. $(E_{\varepsilon,\lambda})$, we consider the C^1 -functional $J_{\varepsilon,\lambda}$, for $u \in H^1(\mathbb{R}^{\mathbb{N}})$.

$$J_{\varepsilon,\lambda}(u) = \frac{1}{2} \int_{\mathbb{R}^{\mathbb{N}}} (|\nabla u|^2 + b(\varepsilon z)u^2) dz - \frac{1}{p} \int_{\mathbb{R}^{\mathbb{N}}} a(\varepsilon z)u_+^p dz - \frac{1}{q} \int_{\mathbb{R}^{\mathbb{N}}} \lambda h(\varepsilon z)u_+^q dz,$$