Multiple Positive Solutions for Semilinear Elliptic Equations Involving Subcritical Nonlinearities in $\mathbb{R}^{\mathbb{N}}$

KHADEMLOO Somayeh* and MOHSENHI Rahelh
Department of Basic Sciences, Babol Noushirvani University of Technology, Babol, Iran.

Received 30 May 2013; Accepted 22 November 2013

Abstract

In this paper, we study how the shape of the graph of $a(z)$ affects on the number of positive solutions of $$
\begin{equation*} -\Delta v+\mu b(z) v=a(z) v^{p-1}+\lambda h(z) v^{q-1}, \quad \text { in } \mathbb{R}^{N} \tag{0.1} \end{equation*}
$$

We prove for large enough $\lambda, \mu>0$, there exist at least $k+1$ positive solutions of the this semilinear elliptic equations where $1 \leq q<2<p<2^{*}=2 N /(N-2)$ for $N \geq 3$.

AMS Subject Classifications: 35J20, 35J25, 35J65
Chinese Library Classifications: O175.8, O175.25
Key Words: Sobolev spaces; semilinear elliptic equations; critical exponent; Nehari manifold; Palais-Smale condition.

1 Introduction

For $N \geq 3,1 \leqslant q<2<p<2^{*}=2 N /(N-2)$, we suppose the semilinear elliptic equations

$$
\left\{\begin{array}{l}
-\Delta v+\mu b(z) v=a(z) v^{p-1}+\lambda h(z) v^{q-1}, \quad \text { in } \mathbb{R}^{N} ; \\
v \in H^{1}\left(\mathbb{R}^{N}\right),
\end{array}\right.
$$

where $\lambda, \mu>0$. Suppose a, b and h satisfy the following conditions:
$\left(a_{1}\right) a$ is a positive continuous function in \mathbb{R}^{N} and $\lim _{|z| \rightarrow \infty} a(z)=a_{\infty}>0$.
$\left(a_{2}\right)$ There are k points $a^{1}, a^{2}, \cdots, a^{k}$ in \mathbb{R}^{N} such that $a\left(a^{i}\right)=a_{\max }=\max _{z \in \mathbb{R}^{N}} a(z)$; for $1 \leq i \leq k$ and $a_{\infty}<a_{\max }$.

[^0]$\left(h_{1}\right) h \in L^{\frac{p}{p-q}}\left(\mathbb{R}^{\mathbb{N}}\right) \cap L^{\infty}\left(\mathbb{R}^{\mathbb{N}}\right)$ and $h \nsupseteq 0$.
$\left(b_{1}\right) b$ is a bounded and positive continuous function in \mathbb{R}^{N}.
For $\mu=1, \lambda=0, a(z)=b(z)=1$ for all $z \in \mathbb{R}^{N}$, we assume the semilinear elliptic equation
\[

\left\{$$
\begin{array}{l}
-\Delta u+u=u^{p-1}, \quad \text { in } \mathbb{R}^{\mathbb{N}} ; \tag{0}\\
u \in H^{1}\left(\mathbb{R}^{N}\right),
\end{array}
$$\right.
\]

where

$$
\|u\|_{H}^{2}=\int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+u^{2}\right) \mathrm{d} z \quad \text { is the norm in } H^{1}\left(\mathbb{R}^{N}\right),
$$

and the energy functional

$$
J_{0}^{\infty}(u)=\frac{1}{2}\|u\|_{H}^{2}-\frac{1}{p}\left\|u_{+}\right\|_{L^{p}}^{p} \quad \text { where } u_{+}=\max \{u, 0\} \geqslant 0
$$

We consider the semilinear elliptic equation

$$
\left\{\begin{array}{l}
-\Delta u+u=a(z) u^{p-1}+\lambda h(z) u^{q-1}, \quad \text { in } \mathbb{R}^{\mathbb{N}} ; \\
u \in H^{1}\left(\mathbb{R}^{\mathbb{N}}\right),
\end{array}\right.
$$

have been studied by Huei-li Lin [1] $\left(b(z)=1, \mu=1\right.$ and for $N \geq 3,1 \leqslant q<2<p<2^{*}=$ $2 N /(N-2)$) and she studied the effect of the coefficient a(z) of the subcritical nonlinearity in $\mathbb{R}^{\mathbb{N}}$, Ambrosetti [2] ($a \equiv 1$ and $1<q<2<p \leq 2^{*}=2 N /(N-2)$ and $\mathrm{Wu}[3](a \in C(\bar{\Omega})$ and changes sign, $\left.1<q<2<p<2^{*}\right)$. They showed that this equation has at least two positive solutions for small enough $\lambda>0$. In [4], Hsu and Lin have studied that there are four positive solutions of the general cases

$$
-\Delta v+v=a(z) v^{p-1}+\lambda h(z) v^{q-1}, \quad \text { in } \mathbb{R}^{N} ;
$$

for small enough $\lambda>0$.
In this paper, we study the existence and multiplicity of positive solutions of the equation $\left(E_{\lambda, \mu}\right)$ in $\mathbb{R}^{\mathbb{N}}$. By the change of variables

$$
\mu=\frac{1}{\varepsilon^{2}} \quad \text { and } \quad u(z)=\varepsilon^{\frac{2}{p-2}} v(\varepsilon z),
$$

Eq. $\left(E_{\lambda, \mu}\right)$ is converted to

$$
\left\{\begin{array}{l}
-\Delta u+b(\varepsilon z) u=a(\varepsilon z) u^{p-1}+\lambda h(\varepsilon z) u^{q-1}, \quad \text { in } \mathbb{R}^{\mathbb{N}} ; \\
u \in H^{1}\left(\mathbb{R}^{N}\right) .
\end{array}\right.
$$

Based on Eq. ($E_{\varepsilon, \lambda}$), we consider the C^{1}-functional $J_{\varepsilon, \lambda}$, for $u \in H^{1}\left(\mathbb{R}^{\mathbb{N}}\right)$.

$$
J_{\varepsilon, \lambda}(u)=\frac{1}{2} \int_{\mathbb{R}^{\mathbb{N}}}\left(|\nabla u|^{2}+b(\varepsilon z) u^{2}\right) \mathrm{d} z-\frac{1}{p} \int_{\mathbb{R}^{\mathbb{N}}} a(\varepsilon z) u_{+}^{p} \mathrm{~d} z-\frac{1}{q} \int_{\mathbb{R}^{\mathbb{N}}} \lambda h(\varepsilon z) u_{+}^{q} \mathrm{~d} z,
$$

[^0]: *Corresponding author. Email addresses: s.khademloo@nit.ac.ir (S. Khademloo), rm_omran78@yahoo.com (R. Mohsenhi)

