An Alternative Method for Solving Lagrange's First-Order Partial Differential Equation with Linear Function Coefficients

ISLAM Syed Md Himayetul ${ }^{1,}$, DAS J. ${ }^{2}$
${ }^{1}$ Fatullapur Adarsha High School, Vill.-Fatullapur, P.O.-Nimta, Dist.-North 24-Parganas, Kolkata-700049, India.
${ }^{2}$ Department of Pure Mathematics, Calcutta University, 35 Ballygunge
Circular Road, Kolkata-700019, West Bengal, India.

Received 19 March 2015; Accepted 30 July 2015

Abstract

An alternative method of solving Lagrange's first-order partial differential equation of the form $$
\left(a_{1} x+b_{1} y+c_{1} z\right) p+\left(a_{2} x+b_{2} y+c_{2} z\right) q=a_{3} x+b_{3} y+c_{3} z
$$ where $p=\partial z / \partial x, q=\partial z / \partial y$ and $a_{i}, b_{i}, c_{i}(i=1,2,3)$ are all real numbers has been presented here.

AMS Subject Classifications: 35A25, 35A99 Chinese Library Classifications: O175.2 Key Words: Lagrange's first-order partial differential equation; linear functions; simultaneous ordinary differential equations; linear homogeneous algebraic equations.

1 Introduction

In the paper [1] by S.M.H. Islam and J. Das, a method of solving the partial differential equation of the form

$$
\begin{equation*}
\left(a_{1} x+b_{1} y+c_{1} z\right) p+\left(a_{2} x+b_{2} y+c_{2} z\right) q=a_{3} x+b_{3} y+c_{3} z \tag{1.1}
\end{equation*}
$$

where $p=\partial z / \partial x, q=\partial z / \partial y$ and $a_{i}, b_{i}, c_{i}(i=1,2,3)$ are all real numbers, has been discussed. The present paper comprises a detailed discussion of an alternative method of the same. This method enables us to find the solutions in some cases of failure of the method adopted in the paper [1].

[^0]
2 The method

The simultaneous ordinary differential equations corresponding to the PDE (1.1) are

$$
\begin{equation*}
\frac{\mathrm{d} x}{a_{1} x+b_{1} y+c_{1} z}=\frac{\mathrm{d} y}{a_{2} x+b_{2} y+c_{2} z}=\frac{\mathrm{d} z}{a_{3} x+b_{3} y+c_{3} z} . \tag{2.1}
\end{equation*}
$$

Suppose that it is possible to find numbers $\rho, \alpha_{i}, \beta_{i}, \gamma_{i}(i=1,2,3) \in C$ such that each ratio of (2.1) equals to

$$
\begin{align*}
& \begin{array}{l}
\frac{\left(\alpha_{1} x+\beta_{1} y+\gamma_{1} z\right) \mathrm{d} x+\left(\alpha_{2} x+\beta_{2} y+\gamma_{2} z\right) \mathrm{d} y+\left(\alpha_{3} x+\beta_{3} y+\gamma_{3} z\right) \mathrm{d} z}{\left(\alpha_{1} x+\beta_{1} y+\gamma_{1} z\right)\left(a_{1} x+b_{1} y+c_{1} z\right)+\left(\alpha_{2} x+\beta_{2} y+\gamma_{2} z\right)\left(a_{2} x+b_{2} y+c_{2} z\right)} \\
\quad \quad+\left(\alpha_{3} x+\beta_{3} y+\gamma_{3} z\right)\left(a_{3} x+b_{3} y+c_{3} z\right)
\end{array} \\
& =\frac{\left(\alpha_{1} x+\beta_{1} y+\gamma_{1} z\right) \mathrm{d} x+\left(\alpha_{2} x+\beta_{2} y+\gamma_{2} z\right) \mathrm{d} y+\left(\alpha_{3} x+\beta_{3} y+\gamma_{3} z\right) \mathrm{d} z}{\left(\sum_{i=1}^{3} \alpha_{i} a_{i}\right) x^{2}+\left(\sum_{i=1}^{3} \beta_{i} b_{i}\right) y^{2}+\left(\sum_{i=1}^{3} \gamma_{i} c_{i}\right) z^{2}+\left(\sum_{i=1}^{3} \alpha_{i} b_{i}+\sum_{i=1}^{3} \beta_{i} a_{i}\right) x y} \\
& \quad \quad+\left(\sum_{i=1}^{3} \beta_{i} c_{i}+\sum_{i=1}^{3} \gamma_{i} b_{i}\right) y z+\left(\sum_{i=1}^{3} \alpha_{i} c_{i}+\sum_{i=1}^{3} \gamma_{i} a_{i}\right) z x \\
& = \\
& \frac{\mathrm{d} D}{\rho D}, \tag{2.2}
\end{align*}
$$

where

$$
\begin{gathered}
D=\left(\sum_{i=1}^{3} \alpha_{i} a_{i}\right) x^{2}+\left(\sum_{i=1}^{3} \beta_{i} b_{i}\right) y^{2}+\left(\sum_{i=1}^{3} \gamma_{i} c_{i}\right) z^{2}+\left(\sum_{i=1}^{3} \alpha_{i} b_{i}+\sum_{i=1}^{3} \beta_{i} a_{i}\right) x y \\
+\left(\sum_{i=1}^{3} \beta_{i} c_{i}+\sum_{i=1}^{3} \gamma_{i} b_{i}\right) y z+\left(\sum_{i=1}^{3} \alpha_{i} c_{i}+\sum_{i=1}^{3} \gamma_{i} a_{i}\right) z x
\end{gathered}
$$

and $\mathrm{d} D$ denotes the total derivative of D :

$$
\begin{aligned}
& \mathrm{d} D=2\left(\sum_{i=1}^{3} \alpha_{i} a_{i}\right) x \mathrm{~d} x+2\left(\sum_{i=1}^{3} \beta_{i} b_{i}\right) y \mathrm{~d} y \\
&+2\left(\sum_{i=1}^{3} \gamma_{i} c_{i}\right) z \mathrm{~d} z+\left(\sum_{i=1}^{3} \alpha_{i} b_{i}+\sum_{i=1}^{3} \beta_{i} a_{i}\right)(x \mathrm{~d} y+y \mathrm{~d} x) \\
&+\left(\sum_{i=1}^{3} \beta_{i} c_{i}+\sum_{i=1}^{3} \gamma_{i} b_{i}\right)(y \mathrm{~d} z+z \mathrm{~d} y)+\left(\sum_{i=1}^{3} \alpha_{i} c_{i}+\sum_{i=1}^{3} \gamma_{i} a_{i}\right)(z \mathrm{~d} x+x \mathrm{~d} z) .
\end{aligned}
$$

[^0]: Corresponding author. Email addresses: him_u2000@yahoo. com (S. Md H. Islam), jtdas2000@yahoo.com (J. Das)

